首页> 外文期刊>GIScience & remote sensing >Discrimination of mangrove species and mudflat classes using in situ hyperspectral data: a case study of Indian Sundarbans
【24h】

Discrimination of mangrove species and mudflat classes using in situ hyperspectral data: a case study of Indian Sundarbans

机译:利用原位高光谱数据区分红树林物种和滩涂类型:以印度Sundarbans为例

获取原文
获取原文并翻译 | 示例

摘要

This study attempts to assess whether canopy spectra of mangrove species and mudflat spectra recorded under field conditions contain adequate spectral information for discerning mangroves at species rank and mudflats at the class level. This article highlights the hyperspectral characteristics of canopies of 17 tropical mangrove species, belonging to nine families, creek water and four mudflat classes found in the tidal forests of Indian Sundarbans. Hyperspectral observations were recorded using a field spectroradiometer, and pre-processed and averaged reflectance values of samples were subjected to various statistically tests such as t-means cluster analysis, one-way analysis of variance (ANOVA), stepwise linear discrimination and factor analysis. k-means cluster analysis showed highest Euclidean distance between Rhizophoraceae and Myrsinaceae/Plumbaginaceae. ANOVA results indicated that all the canopy spectra were statistically different at all the spectral locations except one with majority of the bands exhibiting 99% confidence level, and for the mudflat classes and creek water, all bands showed p< 0.01. Discriminant analysis was performed in different combinations/cases to identify the bands for maximum separability. Optimal Wilks' Lambda (L) were achieved with two, six, four, eight, one, four, two and three for differentiating canopies of the species of Avicennia, Sonneratia, Xylocarpus, Bruguiera, Ceriops, Bruguiera and Rhizophora, all species of Rhizophoraceae, two species of Arecaceae, respectively. For mudflat classes and creek water, the best possible Wilks' Lambda were attained with four, five and two for discriminating upper, intermediate and mud lower, mud lower and water, mud upper with and without roots, correspondingly. Factor analysis was the tool used to identify the wavelengths that were uncorrelated and contained maximum information in the combination of selected wavelengths. The most significant bands for canopy discrimination were 960, 970, 1000, 1070, 1120,1160, 2070, 2080, 2150, 2200, 2240 and 2340 nm; for discrimination amongst mudflat classes and creek water, the bands were 540, 550, 730, 740, 770, 780, 880, 1190, 1290, 2010 and 2150 nm. Overall, hyperspectral data showed potential for discriminating between mangrove canopies of different species and for discerning mudflat classes. The outcomes of the study also indicated the efficacy of the applied statistical tools for discrimination.
机译:本研究试图评估在野外条件下记录的红树林物种的冠层光谱和滩涂光谱是否包含足够的光谱信息,以区分物种级别的红树林和类别级别的滩涂。本文着重介绍了在印度桑达班斯的潮汐森林中发现的17个热带红树林树冠的高光谱特征,这些树属于9个科,溪水和4个滩涂类。使用现场分光辐射计记录高光谱观测值,并对样品的预处理和平均反射率值进行各种统计检验,例如t均值聚类分析,方差单向分析(ANOVA),逐步线性判别和因子分析。 k-均值聚类分析显示,根瘤菌科和肉豆蔻科/铅皮科之间的欧几里得距离最高。方差分析结果表明,所有冠层光谱在所有光谱位置均具有统计学差异,除了一个带中大部分带显示99%置信度,对于滩涂类和小溪水,所有带均显示p <0.01。在不同的组合/情况下进行判别分析,以识别最大分离度的谱带。用两个,六个,四个,八个,一个,四个,两个和三个来获得最佳的Wilks Lambda(L),以区分Avicennia,Sonneratia,Xylocarpus,Bruguiera,Ceriops,Bruguiera和Rhizophora的所有种类的根瘤菌科,分别是槟榔科的两种。对于泥滩和小溪水,最好分别以4、5和2来获得Wilks'Lambda,以分别区分上部,中部和下部泥浆,下部泥浆和水,上部泥浆和没有根部的泥浆。因子分析是用于识别不相关的波长并在所选波长的组合中包含最大信息的工具。冠层识别的最重要波段是960、970、1000、1070、1120、1160、2070、2080、2150、2200、2240和2340 nm;为了区分滩涂类别和小溪水,波段分别为540、550、730、740、770、780、880、1190、1290、2010和2150 nm。总体而言,高光谱数据显示出可以区分不同物种的红树林冠层和辨别滩涂类型的潜力。该研究的结果还表明了应用统计工具进行歧视的功效。

著录项

  • 来源
    《GIScience & remote sensing》 |2013年第4期|400-417|共18页
  • 作者单位

    Agriculture, Terrestrial Biosphere and Hydrology Group (ABHG), Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area (EPSA), Space Applications Centre (SAC), Indian Space Research Organization (ISRO), Jodhpur Tekra, Ahmedabad 380 015, India;

    Agriculture, Terrestrial Biosphere and Hydrology Group (ABHG), Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area (EPSA), Space Applications Centre (SAC), Indian Space Research Organization (ISRO), Jodhpur Tekra, Ahmedabad 380 015, India;

    Institute of Environmental Studies and Wetland Management (IES& WM) DD-24, Sector-I, Salt Lake, Kolkata 700 064, India;

    Agriculture, Terrestrial Biosphere and Hydrology Group (ABHG), Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area (EPSA), Space Applications Centre (SAC), Indian Space Research Organization (ISRO), Jodhpur Tekra, Ahmedabad 380 015, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hyperspectral; information; mangroves; mudflats; statistics; analysis;

    机译:高光谱信息;红树林;泥滩统计;分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号