首页> 外文期刊>GIScience & remote sensing >An object-based SVM method incorporating optimal segmentation scale estimation using Bhattacharyya Distance for mapping salt cedar (Tamarisk spp.) with QuickBird imagery
【24h】

An object-based SVM method incorporating optimal segmentation scale estimation using Bhattacharyya Distance for mapping salt cedar (Tamarisk spp.) with QuickBird imagery

机译:一种基于对象的SVM方法,该方法结合了使用Bhattacharyya距离的最佳分段比例估计,用于通过QuickBird影像映射盐杉(Ta柳)

获取原文
获取原文并翻译 | 示例

摘要

Salt cedar, a predominant arid type of vegetation in Western China, provides invaluable ecosystem services and is important for economic sustainability. Most previous attempts to map salt cedar have been focused at the pixel level and not at the object level. A particular problem for object-based classification is determining the optimal scale for the segmentation. In this study, we proposed a new object-based image analysis method for classifying high resolution satellite image with support vector machine (SVM). Specifically, we set forth three objectives: (1) to choose the optimal multiscale parameters for different cover types with the aid of the Bhattacharyya Distance index; (2) to extract the class specific features for different classes to feed into the SVM classification procedure; and (3) to compare three different classification methods: the integration of object-SVM, SVM at the pixel level and nearest-neighbor at the object level. The result of the case study demonstrated that the multiscale object-SVM method, which employed spectral, texture and shadow features, produced the best overall accuracy (91.6%).
机译:雪松是中国西部干旱的主要植被类型,可提供宝贵的生态系统服务,对于经济可持续发展至关重要。以前映射盐杉的大多数尝试都集中在像素级别而不是对象级别。基于对象的分类的一个特殊问题是确定分割的最佳比例。在这项研究中,我们提出了一种新的基于对象的图像分析方法,用支持向量机(SVM)对高分辨率卫星图像进行分类。具体来说,我们提出了三个目标:(1)利用Bhattacharyya距离指数为不同的覆盖类型选择最佳的多尺度参数; (2)提取不同类别的类别特定特征,以供输入SVM分类程序; (3)比较三种不同的分类方法:对象-SVM的集成,像素级别的SVM和对象级别的最近邻居。案例研究结果表明,利用光谱,纹理和阴影特征的多尺度目标支持向量机方法产生了最佳的总体准确度(91.6%)。

著录项

  • 来源
    《GIScience & remote sensing》 |2015年第3期|257-273|共17页
  • 作者

    Xun Lu; Wang Le;

  • 作者单位

    Capital Normal Univ, Coll Resources Environm & Tourism, Key Lab Resource Environm & Geog Informat Syst, Key Lab Dimens Informat Acquisit & Applicat 3,Min, Beijing 100048, Peoples R China;

    SUNY Buffalo, Dept Geog, Buffalo, NY 14261 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号