首页> 外文期刊>GIScience & remote sensing >Improving impervious surface estimation: an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis
【24h】

Improving impervious surface estimation: an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis

机译:改善不透水的表面估计:基于误差分析的分类树和回归树(CART)和线性光谱混合分析(LSMA)的集成方法

获取原文
获取原文并翻译 | 示例

摘要

Classification and regression tree (CART) has been widely implemented to estimate impervious surface, an important indicator of urbanization and environmental quality. Although the CART algorithm gains higher overall accuracy than linear regression models, only very few studies have noticed that reliability of CART is affected by systematic errors. Especially, CART typically overestimates impervious surfaces in low-density urban areas and underestimates them in high-density urban areas. The primary objective of this study is to develop an improved integrated method to estimate impervious surface with higher accuracy by reducing the systematic errors of CART. This improved method was applied to three urban areas, Chicago (United States), Venice (Italy), and Guangzhou (China) to examine its effectiveness. When compared with the conventional CART, overall mean average error (MAE) and root mean square error (RMSE) of improved method are decreased by 22.64% and 20.93%, respectively, and R-2 rises from 0.9 to 0.96. In high-density impervious surfaces, where intensely developed urban area is located, the MAE and RMSE for the improved method are 0.066 and 0.088, respectively, largely improved from 0.100 to 0.130. Since accurate estimation of high-density impervious surfaces is the fundamental issue for monitoring and understanding the urban environment, the improved method demonstrated in this study is significant.
机译:分类和回归树(CART)已广泛用于估计不透水的表面,这是城市化和环境质量的重要指标。尽管CART算法比线性回归模型具有更高的总体准确性,但只有极少的研究注意到CART的可靠性受系统误差的影响。特别是,CART通常会高估低密度市区的不透水表面,而低估高密度市区的不透水表面。这项研究的主要目的是通过减少CART的系统误差,开发出一种改进的集成方法,以更高的精度估算不透水表面。将该改进方法应用于三个城市地区,即美国芝加哥,美国威尼斯和中国广州。与常规CART相比,改进方法的总体平均平均误差(MAE)和均方根误差(RMSE)分别降低了22.64%和20.93%,R-2从0.9升高到0.96。在城市密集发展的高密度不透水表面,改进方法的MAE和RMSE分别为0.066和0.088,从0.100大大提高到0.130。由于高密度不透水表面的准确估算是监测和了解城市环境的基本问题,因此本研究中证明的改进方法具有重要意义。

著录项

  • 来源
    《GIScience & remote sensing》 |2018年第4期|583-603|共21页
  • 作者单位

    Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China;

    Guangzhou Univ, Sch Geog Sci, Guangzhou 510006, Guangdong, Peoples R China;

    Univ Wisconsin, Dept Geog, Milwaukee, WI 53201 USA;

    Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China;

    Guangdong Prov Inst Land Survey & Land Planning, Guangzhou 510075, Guangdong, Peoples R China;

    Univ Padua, Dept Land Environm Agr & Forestry, I-35020 Legnaro, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    impervious surface; CART; LSMA; remote sensing;

    机译:不透水表面;CART;LSMA;遥感;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号