首页> 外文期刊>GIScience & remote sensing >Segmentation of Airborne Point Cloud Data for Automatic Building Roof Extraction
【24h】

Segmentation of Airborne Point Cloud Data for Automatic Building Roof Extraction

机译:空中点云数据的分割以自动提取建筑物屋顶

获取原文
获取原文并翻译 | 示例

摘要

Roof plane segmentation is a complex task since point cloud data carry no connection information and do not provide any semantic characteristics of the underlying scanned surfaces. Point cloud density, complex roof profiles, and occlusion add another layer of complexity which often encounter in practice. In this article, we present a new technique that provides a better interpolation of roof regions where multiple surfaces intersect creating non-manifold points. As a result, these geometric features are preserved to achieve automated identification and segmentation of the roof planes from unstructured laser data. The proposed technique has been tested using the International Society for Photogrammetry and Remote Sensing benchmark and three Australian datasets, which differ in terrain, point density, building sizes, and vegetation. The qualitative and quantitative results show the robustness of the methodology and indicate that the proposed technique can eliminate vegetation and extract buildings as well as their non-occluding parts from the complex scenes at a high success rate for building detection (between 83.9% and 100% per-object completeness) and roof plane extraction (between 73.9% and 96% per-object completeness). The proposed method works more robustly than some existing methods in the presence of occlusion and low point sampling as indicated by the correctness of above 95% for all the datasets.
机译:屋顶平面分割是一项复杂的任务,因为点云数据不包含连接信息,也不提供基础扫描表面的任何语义特征。点云密度,复杂的屋顶轮廓和遮挡增加了实践中经常遇到的另一层复杂性。在本文中,我们提出了一种新技术,该技术可以更好地对屋顶区域进行插值,在该区域中,多个曲面相交会创建非流形点。结果,保留了这些几何特征,以实现从非结构化激光数据自动识别和分割屋顶平面。这项提议的技术已经使用国际摄影测量与遥感学会基准测试以及三个澳大利亚的数据集进行了测试,这三个数据集的地形,点密度,建筑物大小和植被都不同。定性和定量结果显示了该方法的鲁棒性,表明所提出的技术可以从复杂场景中消除植被并提取建筑物及其非遮挡部分,并且建筑物检测的成功率很高(介于83.9%和100%之间)每个对象的完整性)和屋顶平面提取(每个对象的完整性介于73.9%和96%之间)。在存在遮挡和低点采样的情况下,所提出的方法比某些现有方法更健壮,所有数据集的正确率均在95%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号