首页> 外文期刊>Geotechnical and geological engineering >Residual And Fully Softened Strength Evaluation Of Soils Using Artificial Neural Networks
【24h】

Residual And Fully Softened Strength Evaluation Of Soils Using Artificial Neural Networks

机译:用人工神经网络评价土壤的残余强度和完全软化强度。

获取原文
获取原文并翻译 | 示例

摘要

A backpropagation artificial neural network (ANN) model is developed to predict the secant friction angle of residual and fully softened soils, using data reported by Stark et al. (J Geotech Geoenviron Eng ASCE 131:575-588, 2005). In the ANN model, index properties such as liquid limit, plastic limit, activity, clay fraction and effective normal stress are used as input variables while secant residual friction angle is used as output variable. The model is verified using data that were not used for model training and testing. The results also indicate that the secant residual friction angle of cohesive soils can be predicted quite accurately using liquid limit, clay fraction and effective normal stress as input variables with R~2 = 0.93. The sensitivity analysis results indicate that plastic limit and activity have no appreciable effect on ANN predicted secant friction angles. The secant friction angle predictions of the ANN model were also compared with those of Stark's et al. (2005) curves and the empirical formulas suggested for the same data sets by Wright (Evaluation of soil shear strengths for slope and retaining wall stability with emphasis on high plasticity clays, 2005). The comparison shows that the ANN model predictions are very close to those suggested by the Stark et al. (2005) curves but muchrnbetter than the prediction of Wright's (2005) empirical equations. The results also show that ANN is an alternative powerfultool to predict the secant friction angle of soils.
机译:利用Stark等人报告的数据,开发了一种反向传播人工神经网络(ANN)模型来预测残留和完全软化的土的割线摩擦角。 (J Geotech Geoenviron Eng ASCE 131:575-588,2005)。在ANN模型中,将诸如液体极限,塑性极限,活度,粘土分数和有效法向应力等指标属性用作输入变量,而割线残余摩擦角用作输出变量。使用未用于模型训练和测试的数据验证模型。结果还表明,以液位,黏土分数和有效法向应力为输入变量,R〜2 = 0.93,可以非常准确地预测粘性土的割线剩余摩擦角。灵敏度分析结果表明,塑性极限和活动度对ANN预测的割线摩擦角没有明显影响。 ANN模型的割线摩擦角预测也与Stark等人的相比较。 (2005年)的曲线和经验公式建议由Wright使用相同的数据集(对斜坡和挡土墙的土壤抗剪强度进行评估,重点是高塑性粘土,2005年)。比较表明,ANN模型的预测与Stark等人的预测非常接近。 (2005年)曲线,但比赖特(2005年)经验方程式的预测要好得多。结果还表明,人工神经网络是预测土壤割线摩擦角的替代强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号