首页> 外文期刊>Genetic programming and evolvable machines >Meta-Heuristic Algorithms for FPGA Segmented Channel Routing Problems with Non-standard Cost Functions
【24h】

Meta-Heuristic Algorithms for FPGA Segmented Channel Routing Problems with Non-standard Cost Functions

机译:具有非标准成本函数的FPGA分段通道路由问题的元启发式算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present three meta-heuristic approaches for FPGA segmented channel routing problems (FSCRPs) with a new cost function in which the cost of each assignment is not known in advance, and the cost of a solution only can be obtained from entire feasible assignments. Previous approaches to FSCPs cannot be applied to this kind of cost functions, and meta-heuristics are a good option to tackle the problem. We present two hybrid algorithms which use a Hopfield neural network to solve the problem's constraints, mixed with a Genetic Algorithm (GA) and a Simulated Annealing (SA). The third approach is a GA which manages the problem's constraints with a penalty function. We provide a complete analysis of the three metaheuristics, by tested them in several FSCRP instances, and comparing their performance and suitability to solve the FSCRP.
机译:在本文中,我们介绍了三种具有新成本函数的FPGA分段通道路由问题(FSCRP)的元启发式方法,其中每个分配的成本都不为人所知,而解决方案的成本只能从整个可行方法中获得。作业。以前的FSCP方法无法应用于这种成本函数,因此,元启发式方法是解决该问题的一个不错的选择。我们提出了两种混合算法,它们使用Hopfield神经网络来解决问题的约束,并混合了遗传算法(GA)和模拟退火(SA)。第三种方法是使用惩罚函数来管理问题约束的GA。通过在几个FSCRP实例中对这三种元启发式方法进行测试,并比较它们的性能和适用于解决FSCRP的适用性,我们提供了完整的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号