首页> 外文期刊>Genetic programming and evolvable machines >Hybrid of genetic algorithm and local search to solve MAX-SAT problem using nVidia CUDA framework
【24h】

Hybrid of genetic algorithm and local search to solve MAX-SAT problem using nVidia CUDA framework

机译:使用nVidia CUDA框架将遗传算法与局部搜索相结合以解决MAX-SAT问题

获取原文
获取原文并翻译 | 示例

摘要

General Purpose computing over Graphical Processing Units (GPGPUs) is a huge shift of paradigm in parallel computing that promises a dramatic increase in performance. But GPGPUs also bring an unprecedented level of complexity in algorithmic design and software development. In this paper we describe the challenges and design choices involved in parallelizing a hybrid of Genetic Algorithm (GA) and Local Search (LS) to solve MAXimum SATisfiability (MAX-SAT) problem on a state-of-the-art nVidia Tesla GPU using nVidia Compute Unified Device Architecture (CUDA). MAX-SAT is a problem of practical importance and is often solved by employing metaheuristics based search methods like GAs and hybrid of GA with LS. Almost all the parallel GAs (pGAs) designed in the last two decades were designed for either clusters or MPPs. Unfortunately, very little research is done on the implementation of such algorithms over commodity graphics hardware. GAs in their simple form are not suitable for implementation over the Single Instruction Multiple Thread (SIMT) architecture of a GPU, and the same is the case with conventional LS algorithms. In this paper we explore different genetic operators that can be used for an efficient implementation of GAs over nVidia GPUs. We also design and introduce new techniques/operators for an efficientrnimplementation of GAs and LS over such architectures. We use nVidia Tesla C1060 to perform several numerical tests and performance measurements and show that in the best case we obtain a speedup of 25x. We also discuss the effects of different optimization techniques on the overall execution time.
机译:图形处理单元(GPGPU)上的通用计算是并行计算范式的巨大转变,有望显着提高性能。但是GPGPU在算法设计和软件开发方面也带来了前所未有的复杂性。在本文中,我们描述了并行化遗传算法(GA)和本地搜索(LS)的混合技术以解决最新的nVidia Tesla GPU上的最大可满足性(MAX-SAT)问题的挑战和设计选择。 nVidia计算统一设备架构(CUDA)。 MAX-SAT是一个具有实际重要性的问题,通常通过采用基于元启发式的搜索方法(例如GA和GA与LS的混合)来解决。在过去的二十年中,几乎所有并行GA(pGA)都针对集群或MPP设计。不幸的是,很少有关于在商品图形硬件上实现这种算法的研究。简单形式的GA不适合在GPU的单指令多线程(SIMT)架构上实现,传统的LS算法也是如此。在本文中,我们探索了可用于在nVidia GPU上有效实施GA的不同遗传算子。我们还设计并引入了新技术/运算符,以在此类架构上有效实现GA和LS。我们使用nVidia Tesla C1060进行了一些数值测试和性能测量,结果表明,在最佳情况下,我们可以将速度提高25倍。我们还将讨论不同优化技术对整体执行时间的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号