首页> 外文期刊>Genetic programming and evolvable machines >A hierarchical genetic algorithm approach for curve fitting with B-splines
【24h】

A hierarchical genetic algorithm approach for curve fitting with B-splines

机译:B样条曲线拟合的分层遗传算法

获取原文
获取原文并翻译 | 示例

摘要

Automatic curve fitting using splines has been widely used in data analysis and engineering applications. An important issue associated with data fitting by splines is the adequate selection of the number and location of the knots, as well as the calculation of the spline coefficients. Typically, these parameters are estimated separately with the aim of solving this non-linear problem. In this paper, we use a hierarchical genetic algorithm to tackle the B-spline curve fitting problem. The proposed approach is based on a novel hierarchical gene structure for the chromosomal representation, which allows us to determine the number and location of the knots, and the B-spline coefficients automatically and simultaneously. Our approach is able to find optimal solutions with the fewest parameters within the B-spline basis functions. The method is fully based on genetic algorithms and does not require subjective parameters like smooth factor or knot locations to perform the solution. In order to validate the efficacy of the proposed approach, simulation results from several tests on smooth functions and comparison with a successful method from the literature have been included.
机译:使用样条曲线的自动曲线拟合已广泛用于数据分析和工程应用中。通过样条进行数据拟合的一个重要问题是结的数量和位置的适当选择,以及样条系数的计算。通常,为了解决该非线性问题,分别估计这些参数。在本文中,我们使用分层遗传算法来解决B样条曲线拟合问题。所提出的方法基于用于染色体表示的新型分层基因结构,该结构使我们能够自动且同时确定结的数量和位置以及B样条系数。我们的方法能够在B样条基函数内找到参数最少的最优解。该方法完全基于遗传算法,不需要诸如平滑因子或结位置之类的主观参数即可执行求解。为了验证所提出方法的有效性,已包括对平滑函数的几次测试的仿真结果,并与文献中的成功方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号