首页> 外文期刊>Genetic programming and evolvable machines >Trading between quality and non-functional properties of median filter in embedded systems
【24h】

Trading between quality and non-functional properties of median filter in embedded systems

机译:嵌入式系统中值滤波器的质量和非功能性质之间的交易

获取原文
获取原文并翻译 | 示例

摘要

Genetic improvement has been used to improve functional and nonfunctional properties of software. In this paper, we propose a new approach that applies a genetic programming (GP)-based genetic improvement to trade between functional and non-functional properties of existing software. The paper investigates possibilities and opportunities for improving non-functional parameters such as execution time, code size, or power consumption of median functions implemented using comparator networks. In general, it is impossible to improve non-functional parameters of the median function without accepting occasional errors in results because optimal implementations are available. In order to address this issue, we proposed a method providing suitable compromises between accuracy, execution time and power consumption. Traditionally, a randomly generated set of test vectors is employed so as to assess the quality of GP individuals. We demonstrated that such an approach may produce biased solutions if the test vectors are generated inappropriately. In order to measure the accuracy of determining a median value and avoid such a bias, we propose and formally analyze new quality metrics which are based on the positional error calculated using the permutation principle introduced in this paper. It is shown that the proposed method enables the discovery of solutions which show a significant improvement in execution time, power consumption, or size with respect to the accurate median function while keeping errors at a moderate level. Non-functional properties of the discovered solutions are estimated using data sets and validated by physical measurements on physical microcontrollers. The benefits of the evolved implementations are demonstrated on two real-world problems-sensor data processing and image processing. It is concluded that data processing software modules offer a great opportunity for genetic improvement. The results revealed that it is not even necessary to determine the median value exactly in many cases which helps to reduce power consumption or increase performance. The discovered implementations of accurate, as well as approximate median functions, are available as C functions for download and can be employed in a custom application (http://www.fit.vutbr.cz/research/groups/ehw/median).
机译:遗传改良已用于改善软件的功能和非功能特性。在本文中,我们提出了一种新方法,该方法将基于遗传编程(GP)的遗传改进应用于现有软件的功能和非功能属性之间的交易。本文研究了改善非功能性参数(例如执行时间,代码大小或使用比较器网络实现的中值功能的功耗)的可能性和机会。通常,不可能获得中位数函数的非功能性参数而不接受偶然的结果误差,因为可获得最佳的实现方法。为了解决这个问题,我们提出了一种在准确性,执行时间和功耗之间进行适当折衷的方法。传统上,使用随机生成的一组测试向量来评估GP个体的质量。我们证明,如果测试向量生成不当,则这种方法可能会产生有偏差的解。为了衡量确定中间值的准确性并避免这种偏差,我们提出并正式分析了新的质量指标,这些指标基于使用本文介绍的置换原理计算出的位置误差。结果表明,所提出的方法使得能够发现解决方案,这些解决方案相对于准确的中值函数在执行时间,功耗或尺寸方面显示出显着改善,同时将错误保持在中等水平。使用数据集估算发现的解决方案的非功能属性,并通过物理微控制器上的物理测量进行验证。在两个现实世界的问题上(传感器数据处理和图像处理)证明了改进的实现的好处。结论是数据处理软件模块为遗传改良提供了巨大的机会。结果表明,在许多情况下甚至没有必要精确确定中值,这有助于降低功耗或提高性能。已发现的精确以及近似中值函数的实现可作为C函数下载,并可在自定义应用程序中使用(http://www.fit.vutbr.cz/research/groups/ehw/median)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号