首页> 外文期刊>Genetic programming and evolvable machines >Comparison of semantic-based local search methods for multiobjective genetic programming
【24h】

Comparison of semantic-based local search methods for multiobjective genetic programming

机译:多目标遗传规划中基于语义的局部搜索方法的比较

获取原文
获取原文并翻译 | 示例

摘要

We report a series of experiments that use semantic-based local search within a multiobjective genetic programming (GP) framework. We compare various ways of selecting target subtrees for local search as well as different methods for performing that search; we have also made comparison with the random desired operator of Pawlak et al. using statistical hypothesis testing. We find that a standard steady state or generational GP followed by a carefully-designed single-objective GP implementing semantic-based local search produces models that are mode accurate and with statistically smaller (or equal) tree size than those generated by the corresponding baseline GP algorithms. The depth fair selection strategy of Ito et al. is found to perform best compared with other subtree selection methods in the model refinement.
机译:我们报告了一系列的实验,这些实验在多目标遗传编程(GP)框架内使用基于语义的本地搜索。我们比较了选择目标子树进行本地搜索的各种方法以及执行该搜索的不同方法。我们还与Pawlak等人的随机期望算符进行了比较。使用统计假设检验。我们发现,标准稳态或世代GP以及经过精心设计的单目标GP实施基于语义的本地搜索后,所生成的模型与相应的基准GP生成的模型相比,模式准确且树大小在统计上更小(或相等)算法。伊藤等人的深度公平选择策略。在模型细化中,与其他子树选择方法相比,发现的性能最好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号