首页> 外文期刊>Generation, Transmission & Distribution, IET >Placement of minimum distributed generation units observing power losses and voltage stability with network constraints
【24h】

Placement of minimum distributed generation units observing power losses and voltage stability with network constraints

机译:放置最小分布式发电机组,观察功率损耗和电压稳定性(受网络限制)

获取原文
获取原文并翻译 | 示例

摘要

Distributed generations (DGs) are recently in growing attention as a solution to environmental and economical challenges caused by conventional power plants. In this study, a multi-objective framework as a nonlinear programming (NLP) is proposed for optimal placement and sizing of DG units. Objective functions include minimising the number of DGs and power losses as well as maximising voltage stability margin formulated as a function of decision variables. The objective functions are combined into one objective function. To avoid problems with choosing appropriate weighting factors, fuzzification is applied to objective functions to bring them into the same scale. DG units are placed at more efficient buses rather than end buses of radial links as usually determined by previous methods for improving voltage stability. Also, power system constraints including branch and voltage limits are observed in the problem. The proposed method not only is able to model all types of DG technologies but also it employs adaptive reactive limits for DGs rather than fixed limits. In addition, a three-stage procedure is proposed to gradually solve the multi-objective problem in order to prevent infeasible solutions. Also, a new technique is proposed to formulate the number of DGs without converting the NLP problem into mixed-integer NLP. Results of testing the proposed method show its efficiency.
机译:分布式发电(DG)作为解决传统发电厂造成的环境和经济挑战的一种解决方案,最近受到越来越多的关注。在这项研究中,提出了一种多目标框架作为非线性规划(NLP),以优化DG单元的位置和大小。目标功能包括最小化DG的数量和功率损耗,以及最大化根据决策变量确定的电压稳定裕度。目标函数被组合为一个目标函数。为避免选择适当的加权因子时出现问题,将模糊化应用于目标函数以将它们划分为相同的比例。 DG单元放置在更有效的总线上,而不是通常通过以前的方法来确定电压稳定性的径向链接的末端总线上。此外,在该问题中还观察到了电力系统的约束,包括分支和电压限制。所提出的方法不仅能够对所有类型的DG技术进行建模,而且对DG使用自适应无功限值,而不是固定限值。此外,提出了一个三阶段程序来逐步解决多目标问题,以防止不可行的解决方案。另外,提出了一种新的技术来公式化DG的数量而不将NLP问题转换为混合整数NLP。测试该方法的结果表明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号