首页> 外文期刊>Fuzzy sets and systems >Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach
【24h】

Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach

机译:Caputo-Katugampola分数阶导数方法下的模糊分数阶微分方程

获取原文
获取原文并翻译 | 示例

摘要

In this work, an initial value problem of Caputo-Katugampola (CK) fractional differential equations in fuzzy setting is considered and an idea of successive approximations under generalized Lipschitz condition is used to prove the existence and uniqueness results of the solution to the given problem. In order to obtain the above results, some necessary comparison theorems in real-valued differential equation under CK fractional derivative are established. Finally, a new technique to find analytical solutions of CK fuzzy fractional differential equations by using the solutions of fuzzy integer order differential equations is proposed. Some examples illustrating the applications of our results are presented. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这项工作中,考虑了模糊设置下的Caputo-Katugampola(CK)分数阶微分方程的初值问题,并采用广义Lipschitz条件下的逐次逼近的思想来证明该问题解的存在性和唯一性。为了获得上述结果,建立了在CK分数阶导数下实值微分方程中一些必要的比较定理。最后,提出了一种利用模糊整数阶微分方程解求解CK模糊分数阶微分方程解析解的新技术。给出了一些例子说明我们的结果的应用。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号