首页> 外文期刊>Fuzzy sets and systems >Applying multi-objective evolutionary algorithms to the automatic learning of extended Boolean queries in fuzzy ordinal linguistic information retrieval systems
【24h】

Applying multi-objective evolutionary algorithms to the automatic learning of extended Boolean queries in fuzzy ordinal linguistic information retrieval systems

机译:多目标进化算法在模糊序语言信息检索系统扩展布尔查询自动学习中的应用

获取原文
获取原文并翻译 | 示例

摘要

The performance of information retrieval systems (IRSs) is usually measured using two different criteria, precision and recall. Precision is the ratio of the relevant documents retrieved by the IRS in response to a user's query to the total number of documents retrieved, whilst recall is the ratio of the number of relevant documents retrieved to the total number of relevant documents for the user's query that exist in the documentary database. In fuzzy ordinal linguistic IRSs (FOLIRSs), where extended Boolean queries are used, defining the user's queries in a manual way is usually a complex task. In this contribution, our interest is focused on the automatic learning of extended Boolean queries in FOLIRSs by means of multi-objective evolutionary algorithms considering both mentioned performance criteria. We present an analysis of two well-known general-purpose multi-objective evolutionary algorithms to learn extended Boolean queries in FOLIRSs. These evolutionary algorithms are the non-dominated sorting genetic algorithm (NSGA-II) and the strength Pareto evolutionary algorithm (SPEA2).
机译:信息检索系统(IRS)的性能通常使用两种不同的标准来衡量,即精度和召回率。精度是IRS响应用户查询而检索的相关文档与所检索文档总数之比,​​而查全率是针对用户查询所检索的相关文档总数与相关文档总数之比。存在于文献数据库中。在使用扩展布尔查询的模糊序数语言IRS(FOLIRS)中,以手动方式定义用户查询通常是一项复杂的任务。在此贡献中,我们的兴趣集中在通过考虑两个提到的性能标准的多目标进化算法,自动学习FOLIRS中的扩展布尔查询。我们目前对两种众所周知的通用多目标进化算法进行分析,以学习FOLIRS中的扩展布尔查询。这些进化算法是非支配排序遗传算法(NSGA-II)和强度帕累托进化算法(SPEA2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号