首页> 外文期刊>Fuzzy sets and systems >A comparative study of feature extraction methods and their application to P-RBF NNs in face recognition problem
【24h】

A comparative study of feature extraction methods and their application to P-RBF NNs in face recognition problem

机译:特征提取方法的比较研究及其在人脸识别问题中的P-RBF神经网络应用

获取原文
获取原文并翻译 | 示例

摘要

This study is concerned with a design of a face recognition algorithm realized based on feature extraction with the aid of the 2-directional 2-dimensional linear discriminant analysis referred to as (2D)(2)LDA. The 2DLDA algorithm yields high accuracy, but comes with an unresolved problem of handling large feature matrices present in face recognition problems. The proposed (2D)(2)LDA algorithm is computationally more efficient and produces more powerful discrimination decision. The proposed P-RBF NNs is used as a recognition module. The architecture of this module consists of three functional components. The coefficients of the P-RBF NNs model are obtained by fuzzy inference method forming the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum, fuzzification coefficient, and the feature selection mechanism) of the networks are optimized by means of differential evolution (DE). The experimental results reported for benchmark face datasets - the Yale, ORL database, and IC&CI dataset demonstrate the effectiveness and efficiency of (2D)(2)LDA algorithm compared with other pre- processing approaches such as LPP, 2D-PCA, 2D-LPP, SR, PCA, (2D)(2)PCA and fusion of PCA-LDA. The experimental results show that (2D)(2)LDA based P-RBF NNs achieves higher performance than being reported by other methods. (C) 2015 Elsevier B.V. All rights reserved.
机译:这项研究涉及基于特征提取,借助二维二维线性判别分析(2D)(2)LDA,基于特征提取实现的人脸识别算法的设计。 2DLDA算法具有很高的准确性,但存在一个未解决的问题,即无法处理人脸识别问题中存在的大特征矩阵。所提出的(2D)(2)LDA算法在计算上更加有效,并且可以产生更强大的判别决策。提出的P-RBF NNs被用作识别模块。该模块的体系结构由三个功能组件组成。 P-RBF NNs模型的系数是通过构成模糊规则的推理部分的模糊推理方法获得的。网络的基本设计参数(包括学习率,动量,模糊化系数和特征选择机制)通过差分进化(DE)进行了优化。报告的基准面部数据集-Yale,ORL数据库和IC&CI数据集的实验结果证明了(2D)(2)LDA算法与其他预处理方法(例如LPP,2D-PCA,2D-LPP)相比的有效性和效率,SR,PCA,(2D)(2)PCA和PCA-LDA的融合。实验结果表明,基于(2D)(2)LDA的P-RBF神经网络比其他方法报道的具有更高的性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号