机译:FEDRD:隐私保留适应性联邦学习框架,用于智能危险道路损伤检测和警告
Department of Computer Science University of Gbttingen 37077 Gbttingen Germany;
Department of Computer Science University of Gbttingen 37077 Gbttingen Germany;
Department of Computer Science College of Computing and Informatics University of Sharjah 27272 Sharjah United Arab Emirates;
Institute of Information Systems University of Gb'ttingen 37073 Gb'ttingen Germany;
Department of Computer Science University of Gbttingen 37077 Gbttingen Germany;
Edge-cloud computing; Federated learning; Differential privacy; Hazardous road damage detection and warning; Traffic safety; Latency;
机译:基于链接安全多方计算的隐私保留联合学习框架
机译:一个隐私保留的分布式上下文联合联盟在线学习框架,具有在社交推荐系统中的大数据支持
机译:具有普通聚合和多方实体匹配的隐私保留联合学习框架
机译:保留隐私和联合学习的非负矩阵分解框架
机译:智能网络物理道路系统中保护隐私的交通流量测量。
机译:隐私保护的多任务学习框架用于人脸检测地标本地化姿势估计和性别识别
机译:基于适应性的皮肤病检测的基于适应性的机器学习智能系统:朝向智能Dermoscopy设备的步骤