首页> 外文期刊>Future generation computer systems >MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in Internet of Things
【24h】

MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in Internet of Things

机译:MCFT-CNN:使用传统和转移学习的微调卷积神经网络的恶意软件分类

获取原文
获取原文并翻译 | 示例

摘要

With ever-increasing, internet-connected devices provide an opportunity to fulfil the attacker's malicious intention. They use malicious programs to compromise the devices and use them to infect others also. The security researchers are straggling to develop a technique that detects all the malware accurately because of the use of invincible techniques in the development of malware such as strong encryption, obfuscation, polymorphic and metamorphic engine. In this context, this paper proposes a novel malware classification with fine-tune convolution neural networks (MCFT-CNN) model. The MCFT-CNN model detects the unknown malware sample without feature engineering and prior knowledge of binary code analysis or reverse engineering, even the advanced evading techniques used to develop the malware. The model uses deep transfer learning to classify the malware images to their respective malware families. The proposed model enhances the ResNet50 model by altering the last layer with a fully connected dense layer. The output of fully connected dense layer and knowledge of ImageNet model are supplied to softmax layer for malware classification. The model is trained with Mallmg malware datasets. The proposed model reported 99.18% accuracy and 5.14ms prediction time. The model also shows consistent performance with a relatively larger dataset (Microsoft malware challenge dataset, approximately 500GB) with 98.63% accuracy and 5.15ms prediction time. The proposed model shows consistent efficacy with two benchmark datasets that clarify the model's generalisability to perform on the diverse datasets.
机译:随着不断增加的,互联网连接的设备提供了实现攻击者恶意意图的机会。他们使用恶意程序来危及设备并使用它们感染其他人。安全研究人员讨论开发一种技术,可以准确地检测所有恶意软件,因为在更强大的加密,混淆,多态性和变质引擎等恶意软件中使用无形技术。在这方面,本文提出了一种新的恶意软件分类,具有微调卷积神经网络(MCFT-CNN)模型。 MCFT-CNN模型检测未知的恶意软件样本,无需特征工程和二进制代码分析或逆向工程的先验知识,即使是用于开发恶意软件的高级逃避技术。该模型使用深度传输学习将恶意软件图像分类为各自的恶意软件系列。该模型通过用完全连接的密集层改变最后一层来增强Reset50模型。完全连接的密集层的输出和想象成型模型的知识被提供给Softmax层进行恶意软件分类。该模型用Mallmg Malware数据集接受培训。拟议的模型报告了99.18%的精度和5.14ms的预测时间。该模型还显示了一致的性能,具有相对较大的数据集(Microsoft恶意软件挑战数据集,大约500GB),精度为98.63%和5.15ms预测时间。所提出的模型显示了与两个基准数据集的一致功效,该数据集阐明了模型在不同数据集上执行的不可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号