首页> 外文期刊>Future generation computer systems >MPdist-based missing data imputation for supporting big data analyses in IoT-based applications
【24h】

MPdist-based missing data imputation for supporting big data analyses in IoT-based applications

机译:基于MPDist的基于MPDist的缺失数据载体,用于支持基于IOT的应用程序的大数据分析

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed an enormous growth in the number of wireless IoT devices and thereby Internet of Things (IoT) is classified as one of the novel cutting edge technologies that has redesigned the traditional industry into a smart industry, given its applicability for a wide range of applications in providing data-driven decision-making. Meanwhile, the data with missing values is still emerging as one of the longstanding challenges in an IoT architecture due to the common-mode failures, potentially leading to both bias and loss of precision. In spite of the fact that numerous techniques have been developed for imputing missing values, the major issue in terms of imputation precision or computational complexity for large missing subsequences is still a matter under debate. To address this issue, this paper proposes a newly developed algorithm called MP-BMDI that ensures high imputation performance for supporting big data analyses in IoT-based applications, where the absence of large missing subsequences is fully required to offer unbiased results. In our approach, we initially seek a finite number of subsequences that are mostly similar to the subsequence before the missing values, then adjust the height of these following subsequences to optimal locations. Once the most proper subsequence for replacing is chosen among them based on the pattern score function PSF(r) introduced in this paper, the missing gap is completely filled by the corresponding subsequence. Numerical results are here presented to validate the merits of the proposed algorithm compared to the alternative benchmark approaches by leveraging sensor data collected from real-time environmental monitoring and deliver significant insights on the effectiveness of the proposed algorithm from various perspectives.
机译:近年来,无线物联网设备的数量,无线IOT设备的数量,从而被归类为将传统工业重新设计到智能行业的新型尖端技术之一,鉴于其适用于广泛范围应用在提供数据驱动决策中的应用。同时,由于共模故障,缺失值的数据仍然是由于IOT架构中的长期挑战之一,可能导致偏差和精度损失。尽管已经发展了许多用于抵御缺失的价值的许多技术,但估算精度或大型丢失子次数的计算复杂性方面的主要问题仍然是辩论的问题。为了解决这个问题,本文提出了一种名为MP-BMDI的新开发的算法,可确保支持基于IOT的应用程序的大数据分析的高归力性能,其中没有大量丢失的子序列是完全需要提供无偏见的结果。在我们的方法中,我们最初寻求一个有限数量的后续子序列,这些子序列大多数与缺失值之前的子序列相似,然后将以下子序列的高度调整为最佳位置。一旦基于本文所介绍的图案分数函数PSF(R),选择最适当的替换子序列时,缺失的间隙是完全填充的相应子序列。这里提出了数值结果来验证所提出的算法的优点,而通过利用从实时环境监测中收集的传感器数据,并对各种观点来提供关于所提出的算法的有效性的显着洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号