首页> 外文期刊>Future generation computer systems >Research on calculation model of bottom of the well pressure based on machine learning
【24h】

Research on calculation model of bottom of the well pressure based on machine learning

机译:基于机器学习的井压底部计算模型研究

获取原文
获取原文并翻译 | 示例

摘要

Based on the research on the calculation model of the bottom of the well pressure of the Managed Pressure Drilling, a set of accurate and effective monitoring methods for the bottom of the well pressure of the Managed Pressure Drilling is proposed.Through the analysis of the hydraulic model, the feasibility of the artificial intelligence algorithm in the bottom of the well pressure calculation and monitoring method is studied. Based on the analysis of the wellbore flow hydraulic model, the simulated annealing (SA) algorithm is combined with the support vector regression (SVR) machine to establish a set based on the simulated annealing algorithm to improving the supported vector regression machine (SA-SVR) is used to optimize the monitoring method of bottom of the well pressure of Managed Pressure Drilling (MPD).Combining the hydrostatic column pressure, Annulus pressure loss and surface back pressure data, Managed Pressure Drilling bottom of the well pressure monitoring model based machine learning is constructed to realize bottom of the well pressure data monitoring without PWD (Pressure While Drilling) instruments. The bottom of the well pressure monitoring model based on machine learning is used to calculate and analyze the bottom of the well pressure, provide theoretical support for Bottom of the well pressure monitoring of drilling operations, and guide safe drilling at the construction site.
机译:基于对管理压力钻孔孔压力底部的计算模型的研究,提出了一组精确且有效的监测方法,用于施加压力钻井的井压力底部。通过对液压的分析模型,研究了井压计算底部的人工智能算法的可行性。基于对井筒流动液压模型的分析,模拟退火(SA)算法与支持向量回归(SVR)机器组合以建立基于模拟退火算法的组,以改善支持的向量回归机器(SA-SVR用于优化管理压力钻孔井压力底部的监测方法(MPD).Comning基于井压监测模型的机器学习的静压柱压力,环压力损失和表面背部压力数据,管理压力钻孔底部构造以实现井压数据监测的底部,没有PWD(钻井时的压力)仪器。基于机器学习的井压监测模型的底部用于计算和分析井压的底部,为钻井操作的井压监测底部提供理论支持,并在施工现场引导安全钻孔。

著录项

  • 来源
    《Future generation computer systems》 |2021年第11期|80-90|共11页
  • 作者单位

    School of Mechanical Engineering Southwest Petroleum University No.8 Xindu Avenue Xindu District Chengdu 610500 Sichuan China;

    School of Mechanical Engineering Southwest Petroleum University No.8 Xindu Avenue Xindu District Chengdu 610500 Sichuan China;

    School of Mechanical Engineering Southwest Petroleum University No.8 Xindu Avenue Xindu District Chengdu 610500 Sichuan China;

    CNPC Chuanqing Drilling Engineering Technology Research Institute No.88 Zhongshan Avenue Guanghan 618300 Sichuan China;

    CNPC Chuanqing Drilling Engineering Technology Research Institute No.88 Zhongshan Avenue Guanghan 618300 Sichuan China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Managed Pressure Drilling; Bottom of the well pressure; Machine learning; SA-SVR algorithm;

    机译:管理压力钻孔;井压的底部;机器学习;SA-SVR算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号