机译:基于机器学习的井压底部计算模型研究
School of Mechanical Engineering Southwest Petroleum University No.8 Xindu Avenue Xindu District Chengdu 610500 Sichuan China;
School of Mechanical Engineering Southwest Petroleum University No.8 Xindu Avenue Xindu District Chengdu 610500 Sichuan China;
School of Mechanical Engineering Southwest Petroleum University No.8 Xindu Avenue Xindu District Chengdu 610500 Sichuan China;
CNPC Chuanqing Drilling Engineering Technology Research Institute No.88 Zhongshan Avenue Guanghan 618300 Sichuan China;
CNPC Chuanqing Drilling Engineering Technology Research Institute No.88 Zhongshan Avenue Guanghan 618300 Sichuan China;
Managed Pressure Drilling; Bottom of the well pressure; Machine learning; SA-SVR algorithm;
机译:机器学习模型预测垂直油生产井多相流动底孔压力
机译:基于机器学习的家庭建模:调查消费诱导的环境影响的区域化自下步法
机译:基于机器学习和剂量计算模型的IPSA计划总停留时间预测
机译:基于气泡点压力与深度关系的流动最佳底孔压力约束的计算(SPE-107058)
机译:基于物理的模型导向机学习分析腕式脉冲性血压监测
机译:用粗粒模型流体动力学计算和基于机器学习参数的治疗抗体粘度的计算
机译:基于高通量第一原理计算预测氧化氮介电常数的机器学习模型
机译:用于计算环形射流接地效果机底压的涡数计算。