首页> 外文期刊>Future generation computer systems >Computer-aided intelligent design using deep multi-objective cooperative optimization algorithm
【24h】

Computer-aided intelligent design using deep multi-objective cooperative optimization algorithm

机译:计算机辅助智能设计采用深层多目标协作优化算法

获取原文
获取原文并翻译 | 示例

摘要

Computer-aided product design means using artificial intelligent systems to automatically design multiple industrial products. This technique has been pervasively applied in multiple domains, such as 3D printing and vehicle manufacture. One challenge of computer-aided design is to incorporate deep neural network to optimally fuse multiple decisions. Multi-objective decision encapsulates many decision-making objectives and leverages deep CNNs to evaluate/optimize the fused multiple decisions. Due to the objectives of economic and social benefit, it is necessary to use a variety of criteria to deeply evaluate and optimize schemes. In this paper, we propose a novel quality-guided deep neural network and weighting scheme to achieve multi-objective decision. We leverage RBF neural network to construct objective weight assignment model. Then, a deep CNN is designed to implement the weighting task, each of which corresponds to a single decision. Our deep CNN has five layers and contains multilayerperceptrons, which indicate the fully connected networks. Each neuron in one layer is connected to all neurons in the next layer. The target of our deep weight-based model is that the multi-objective optimization can be formulated as a single-objective optimization by assigning different weights to each objective. Finally, the non-inferior solution of the multi-objective optimization is generated by updating the weights of the deep CNN during fine tuning. In our experiment, we have demonstrated that our method has the potential to facilitate a variety of applications, such as 3D reconstruction and system optimization. We believe that our proposed algorithm can guide the optimization of various intelligent system pipeline.
机译:计算机辅助产品设计手段使用人工智能系统自动设计多种工业产品。该技术已经普遍应用于多个域,例如3D打印和车辆制造。计算机辅助设计的一个挑战是将深度神经网络纳入最佳地熔断多个决策。多目标决策封装了许多决策目标,并利用深CNN来评估/优化融合多项决策。由于经济和社会效益的目标,有必要使用各种标准来深入评估和优化方案。在本文中,我们提出了一种新颖的质量引导的深度神经网络和加权方案,以实现多目标决定。我们利用RBF神经网络构建客观重量分配模型。然后,设计深的CNN以实现加权任务,每个任务对应于单一决定。我们的深层CNN有五层,包含多层宫殿,其指示完全连接的网络。一层中的每个神经元连接到下一层中的所有神经元。我们深度基于重量的模型的目标是通过将不同的权重分配给每个目标来配制多目标优化可以作为单个客观优化。最后,通过在微调期间更新深CNN的重量来产生多目标优化的非劣质解决方案。在我们的实验中,我们已经证明我们的方法有可能促进各种应用,例如3D重建和系统优化。我们认为,我们的算法可以指导各种智能系统管道的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号