首页> 外文期刊>Future generation computer systems >Design of cloud computing task offloading algorithm based on dynamic multi-objective evolution
【24h】

Design of cloud computing task offloading algorithm based on dynamic multi-objective evolution

机译:基于动态多目标演进的云计算任务卸载算法设计

获取原文
获取原文并翻译 | 示例

摘要

The traditional cloud computing task offloading algorithm consumes abundant energy in task scheduling, which results in a longer average task waiting time. For this reason, a cloud computing task offloading algorithm based on dynamic multi-objective evolution is proposed in this research. In order to ensure the parallel completion of multiple tasks, the dynamic multi-objective evolution method is used to construct the cloud computing task scheduling model and complete the cloud computing task scheduling. Then, based on the calculated effectiveness and validity of energy consumption to complete the initial operation distribution and offloading priority, the time and cost of task offloading are calculated according to the raking results of task offloading priority. The cloud computing tasks are distributed with minimum time and minimum cost as the goal. At the same time, the trade-off coefficients of all utility parameters are effectively combined and dynamically adjusted according to the battery capacity of mobile terminal, in order to achieve the offloading of cloud computing tasks. The average task carrying time, average task waiting time and average task completion time are selected as the parameters to evaluate the algorithm performance. The experimental results show that compared with the existing algorithms, the proposed algorithm shows the best performance, which fully proves the feasibility of the proposed algorithm.
机译:传统的云计算任务卸载算法在任务调度中消耗了丰富的能量,这导致更长的平均任务等待时间。因此,在该研究中提出了一种基于动态多目标演进的云计算任务卸载算法。为了确保并行完成多个任务,使用动态多目标演进方法来构建云计算任务调度模型并完成云计算任务调度。然后,基于计算的能耗的有效性和有效性来完成初始操作分布和卸载优先级,根据任务卸载优先级的耙结果计算任务卸载的时间和成本。云计算任务以最短的时间和最小成本作为目标分发。同时,根据移动终端的电池容量有效地组合和动态地调整所有公用事业参数的权衡系数,以实现云计算任务的卸载。选择平均任务携带时间,平均任务等待时间和平均任务完成时间作为评估算法性能的参数。实验结果表明,与现有算法相比,所提出的算法显示了最佳性能,充分证明了所提出的算法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号