首页> 外文期刊>Future generation computer systems >A container-based cloud-native architecture for the reproducible execution of multi-population optimization algorithms
【24h】

A container-based cloud-native architecture for the reproducible execution of multi-population optimization algorithms

机译:基于集装箱的云原生架构,用于可重复执行多人物优化算法

获取原文
获取原文并翻译 | 示例

摘要

Splitting a population into multiple instances is a technique used extensively in recent years to help improve the performance of nature-inspired optimization algorithms. Work on those populations can be done in parallel, and they can interact asynchronously, a fact that can be leveraged to create scalable implementations based on, among other methods, distributed, multi-threaded, parallel, and cloud-native computing. However, the design of these cloud-native, distributed, multi-population algorithms is not a trivial task. Using as a foundation monolithic (single-instance) solutions, adaptations at several levels, from the algorithmic to the functional, must be made to leverage the scalability, elasticity, (limited) fault-tolerance, reproducibility, and cost-effectiveness of cloud systems while, at the same time, conserving the intended functionality. Instead of an evolutive approach, in this paper, we propose a cloud-native optimization framework created from scratch, that can include multiple (population-based) algorithms without increasing the number of parameters that need tuning. This solution goes beyond the current state of the art, since it can support different algorithms at the same time, work asynchronously, and also be readily deployable to any cloud platform. We evaluate this solution's performance and scalability, together with the effect other design parameters had on it, particularly the number and the size of populations with respect to problem size. The implemented platform is an excellent alternative for running locally or in the cloud, thus proving that cloud-native bioinspired algorithms perform better in their "natural" environment than other algorithms, and set a new baseline for scaling and performance of this kind of algorithms in the cloud.
机译:将人口分成多种情况是近年来广泛使用的技术,以帮助提高自然启发优化算法的性能。这些群体的工作可以并行地完成,它们可以异步地进行交互,这是可以利用的事实,以基于其他方法,分布式,多线程,并行和云本机计算来创建可扩展的实现。但是,这些云天然,分布式的多人算法的设计不是一个微不足道的任务。使用作为基础整体(单例)解决方案,必须从算法到功能的几个层次,从而利用云系统的可扩展性,弹性(有限)的容错,再现性和成本效益来利用算法。虽然,同时保存预期的功能。本文提出了从划痕创建的云原生优化框架,而不是一种演变的方法,可以包括多个(基于人口的)算法而不增加需要调谐的参数的数量。该解决方案超出了本领域的当前状态,因为它可以同时支持不同的算法,异步工作,并且也可以易于部署到任何云平台。我们评估此解决方案的性能和可扩展性,以及其他设计参数的效果,特别是群体的数量和群体的尺寸。实现的平台是在本地或云中运行的绝佳替代方案,从而证明云天然生物淘度算法在其比其他算法中的“自然”环境中表现更好,并为这种算法的缩放和性能设置了新的基准。云端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号