首页> 外文期刊>Future generation computer systems >BigTrustScheduling: Trust-aware big data task scheduling approach in cloud computing environments
【24h】

BigTrustScheduling: Trust-aware big data task scheduling approach in cloud computing environments

机译:BigTrustscheduling:云计算环境中的信任感知大数据任务调度方法

获取原文
获取原文并翻译 | 示例

摘要

Big data task scheduling in cloud computing environments has gained considerable attention in the past few years, due to the exponential growth in the number of businesses that are relying on cloud-based infrastructure as a backbone for big data storage and analytics. The main challenge in scheduling big data services in cloud-based environments is to guarantee minimal makespan while minimizing at the same time the amount of utilized resources. Several approaches have been proposed in an attempt to overcome this challenge. The main limitation of these approaches stems from the fact that they overlook the trust levels of the Virtual Machines (VMs), thus risking to endanger the overall Quality of Service (QoS) of the big data analytic process, which includes not only heartbeat frequency ratio and resource consumption, but also security challenges such as intrusion detection, access control, authentication, etc. To overcome this limitation, we propose in this work a trust-aware scheduling solution called BigTrustScheduling that consists of three stages: VMs' trust level computation, tasks priority level determination, and trust-aware scheduling. Experiments conducted on a real Hadoop cluster environment using real-world datasets collected from the Google Cloud Platform pricing and Bitbrains task and resource requirements show that our solution minimizes the makespan by 59% compared to the Shortest Job First (SJF), by 48% compared to the Round Robin (RR), and by 40% compared to the improved Particle Swarm Optimization (PSO) approaches in the presence of untrusted VMs. Moreover, our solution decreases the monetary cost by 58% compared to the SJF, by 47% compared to the RR, and by 38% compared to the improved PSO in the presence of untrusted VMs. The results in this work can be applicable to other problems. This would be possible through tuning the corresponding metrics in the formulation of the problem and solution, as will as in the experimental environment. In fact, the trust model can be extended to other environments including cloud computing, IoT, parallel computing, etc.
机译:由于依赖基于云的基础设施作为大数据存储和分析的骨干的业务数量的指数增长,云计算环境中的大数据任务调度在过去几年中,在过去几年中取得了相当大的关注。在基于云的环境中调度大数据服务的主要挑战是保证最小的MakeSpan,同时在利用资源的相同时间最小化。已经提出了几种方法,以试图克服这一挑战。这些方法的主要限制源于它们忽略了虚拟机(VMS)的信任级别,因此冒险危害大数据分析过程的整体服务质量(QoS),其不仅包括心跳频率比还有资源消耗,还有安全挑战,如入侵检测,访问控制,身份验证等,以克服这种限制,我们提出了一个名为BigTrustscheduling的信任感知调度解决方案,包括三个阶段:VMS信任级别计算,任务优先级确定和信任感知的调度。使用从Google云平台定价和Bitbrains任务和资源需求中收集的现实世界数据集进行的实验表明,与最短的工作(SJF)相比,我们的解决方案最小化了59%的Mapspan,比较了48%与在不受信任的VMS存在下,与改进的粒子群优化(PSO)接近的改进的粒子群优化(PSO)相比,循环(RR)和40%。此外,与SJF相比,我们的解决方案将货币成本降低58%,与RR相比,47%,与不受信任的VMS存在的改进的PSO相比,38%。这项工作的结果可以适用于其他问题。通过调整问题和解决方案的配方中的相应度量,可以如此,如实验环境中的相应度量,这是可能的。事实上,信任模型可以扩展到其他环境,包括云计算,物联网,并行计算等。

著录项

  • 来源
    《Future generation computer systems》 |2020年第9期|1079-1097|共19页
  • 作者单位

    Concordia Institute for Information Systems Engineering Concordia University Montreal Canada;

    Concordia Institute for Information Systems Engineering Concordia University Montreal Canada;

    Department of Computer Science and Engineering Universite du Quebec en Outaouais Gatineau Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Task scheduling; Big data; Cloud computing; Trust;

    机译:任务调度;大数据;云计算;相信;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号