首页> 外文期刊>Future generation computer systems >Sequence-to-sequence models for workload interference prediction on batch processing datacenters
【24h】

Sequence-to-sequence models for workload interference prediction on batch processing datacenters

机译:批量处理数据中心工作负载干扰预测的序列到序列模型

获取原文
获取原文并翻译 | 示例

摘要

Co-scheduling of jobs in data centers is a challenging scenario where jobs can compete for resources, leading to severe slowdowns or failed executions. Efficient job placement on environments where resources are shared requires awareness on how jobs interfere during execution, to go far beyond ineffective resource overbooking techniques. Current techniques, most of which already involve machine learning and job modeling, are based on workload behavior summarization over time, rather than focusing on effective job requirements at each instant of the execution. In this work, we propose a methodology for modeling co-scheduling of jobs on data centers, based on their behavior towards resources and execution time and using sequence-to-sequence models based on recurrent neural networks. The goal is to forecast co-executed jobs footprint on resources throughout their execution time, from the profile shown by the individual jobs, in order to enhance resource manager and scheduler placement decisions. The methods presented herein are validated by using High Performance Computing benchmarks based on different frameworks (such as Hadoop and Spark) and applications (CPU bound, IO bound, machine learning, SQL queries...). Experiments show that the model can correctly identify the resource usage trends from previously seen and even unseen co-scheduled jobs.
机译:数据中心中的作业的共同调度是一个具有挑战性的场景,工作可以竞争资源,导致严重的放缓或失败的执行。共享资源的环境中的高效就业位置需要了解作业在执行期间干扰的意识,远远超出无效资源,超越技术。目前的技术,其中大多数已经涉及机器学习和职业建模,基于随时间的工作量行为概括,而不是在执行的每个瞬间关注有效的工作要求。在这项工作中,我们提出了一种方法,用于根据其对资源和执行时间的行为以及基于经常性神经网络的序列 - 序列模型来建立数据中心上的作业的共享作业的协调方法。目标是从各个作业所示的配置文件中预测整个执行时间的资源上的共同执行的作业足迹,以增强资源管理器和调度程序放置决策。本文呈现的方法是通过使用基于不同框架(例如Hadoop和Spark)和应用程序(CPU绑定,IO绑定,机器学习,SQL查询...)的高性能计算基准来验证。实验表明,该模型可以正确地确定先前看到的资源使用趋势,甚至是未调定期的共同安排的工作。

著录项

  • 来源
    《Future generation computer systems》 |2020年第9期|155-166|共12页
  • 作者单位

    Barcelona Supercomputing Center (BSC) C. Jordi Girona 1-3 08034 Barcelona Spain Universitat Politecnica de Catalunya (UPC) - BarcelonaTECH Spain;

    Universitat Politecnica de Catalunya (UPC) - BarcelonaTECH Spain;

    Barcelona Supercomputing Center (BSC) C. Jordi Girona 1-3 08034 Barcelona Spain Universitat Politecnica de Catalunya (UPC) - BarcelonaTECH Spain;

    Barcelona Supercomputing Center (BSC) C. Jordi Girona 1-3 08034 Barcelona Spain Universitat Politecnica de Catalunya (UPC) - BarcelonaTECH Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Resource management; Sequence-to-sequence; Workload interference; Deep learning; Workload placement;

    机译:资源管理;序列到序列;工作量干扰;深度学习;工作负载安置;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号