首页> 外文期刊>Future generation computer systems >Enhancing performance of IoT applications with load prediction and cloud elasticity
【24h】

Enhancing performance of IoT applications with load prediction and cloud elasticity

机译:增强负载预测和云弹性的IOT应用的性能

获取原文
获取原文并翻译 | 示例

摘要

Elasticity is one of the most important services of cloud computing, referring to the ability to add or remove resources according to the needs of the application or service. In particular to the Internet of Things (IoT) scope, the use of this facility becomes pertinent since IoT requires a middleware that should be capable to handle high volume of data at real-time. Data can arrive in the middleware in parallel as in terms of input data from Radio-Frequency Identification (RFID) readers as request-reply query operations from the users side. Solutions modeled at software, hardware and/or architecture levels present limitations to handle such load. In this context, this article presents Proliot - a proactive elasticity model that combines cloud and high performance computing to address the IoT scalability problem in a novel EPCglobal-compliant architecture. The model can be seen as a service that keeps the same API but offers an elastic EPCIS component in the cloud, which is designed as a collection of virtual machines (VMs) that are automatically allocated and deallocated on-the-fly in accordance with the system load. The Proliot contribution consists in a mathematical formalism that uses Autoregressive Integrated Moving Average (ARIMA) and Weighted Moving Average to predict the IoT load behavior, so anticipating scaling in and out operations and then delivering VMs as close the moment they will be required as possible. Based on the Proliot model, we developed a prototype that was evaluated with different workload patterns against two concurrents: a threshold-based reactive elasticity model and non-elastic solution. The results were encouraging in favor of Proliot, presenting significant performance gains in terms of response time and request throughput.
机译:弹性是云计算最重要的服务之一,参考根据应用程序或服务的需求添加或删除资源的能力。特别是对于物联网(物联网)范围,由于IOT需要一个应该能够在实时处理大量数据量的中间件,因此使用该设施的使用变得相关。数据可以与从用户侧的Request-Request查询操作从射频识别(RFID)读取器的输入数据并行地到达中间件。在软件,硬件和/或架构级别建模的解决方案存在处理此类负载的限制。在这方面,本文介绍了Prolitiot - 一个主动弹性模型,结合了云和高性能计算,以解决新的EPCGlobal兼容架构中的IoT可扩展性问题。该模型可以被视为保持相同API的服务,但在云中提供弹性EPCIS组件,该组件被设计为根据的虚拟机(VM)的集合,该集合是根据其自动分配和释放的虚拟机(VM)的集合系统负载。突破性贡献在数学形式中组成了使用自回归综合移动平均(ARIMA)和加权移动平均值来预测物联网负荷行为,因此预测缩放和输出操作,然后将VMS尽可能关闭它们。基于Proliot模型,我们开发了一种用不同的工作量模式进行评估的原型,用于两种同时:基于阈值的反应弹性模型和非弹性溶液。结果令人鼓舞的是,有利于扩散,在响应时间和要求吞吐量方面提出了显着的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号