首页> 外文期刊>Future generation computer systems >Opportunistic sensing for inferring in-the-wild human contexts based on activity pattern recognition using smart computing
【24h】

Opportunistic sensing for inferring in-the-wild human contexts based on activity pattern recognition using smart computing

机译:基于活动模式识别的智能计算推断野生环境的机会感测

获取原文
获取原文并翻译 | 示例

摘要

In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial prominence, and numerous research works have been conducted in this regard. However, the accurate recognition of in-the-wild human activities and the associated contexts remains an open research challenge to be addressed. This research work presents a novel activity-aware human context recognition scheme that explicitly learns human activity patterns in diverse behavioral contexts and infers in-the-wild user contexts based on physical activity recognition. In this aspect, five daily living activities, e.g., lying, sitting, standing, walking, and running, are associated with overall fourteen different behavioral contexts, including phone positions. A public domain dataset, i.e., Extrasensory, is used for evaluating the proposed scheme using a series of machine learning classifiers. Random Forest classifier achieves the best recognition rate of 88.4% and 89.8% in recognizing five physical activities and the associated behavioral contexts, respectively, which demonstrates the efficacy of the proposed method.
机译:近年来,随着物联网和智能传感技术的发展,基于传感器的身体活动识别得到了极大的重视,并且在这方面进行了大量的研究工作。但是,对野生动物活动及其相关环境的准确识别仍然是一个有待解决的开放研究挑战。这项研究工作提出了一种新颖的活动感知型人类上下文识别方案,该方案可明确学习各种行为上下文中的人类活动模式,并基于身体活动识别来推断野生的用户上下文。在这方面,五种日常生活活动,例如躺着,坐着,站着,走路和跑步,与包括电话位置在内的总共十四种不同的行为环境有关。公共领域数据集(即Extrasensory)用于使用一系列机器学习分类器评估提出的方案。随机森林分类器在识别五种身体活动和相关的行为背景下的最佳识别率分别为88.4%和89.8%,这证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号