首页> 外文期刊>Future generation computer systems >Cascaded Volumetric Fully Convolutional Networks for Whole-Heart and Great Vessel 3D segmentation
【24h】

Cascaded Volumetric Fully Convolutional Networks for Whole-Heart and Great Vessel 3D segmentation

机译:用于全心和大血管3D分割的级联体积全卷积网络

获取原文
获取原文并翻译 | 示例

摘要

The absence of cardiac chambers, holes in the heart and abnormal connections cause the death of hundreds of people every year. The clinical team involved in the diagnosis and treatment decisions for congenital heart disease (CHD) must be consistent in their choices. Therefore, in cases of CHD there is a need for a system that is capable of segmenting the whole heart and large blood vessels in 3D efficiently, quickly, and accurately. This article proposes to fill this need by using Cascaded Volumetric Fully Convolutional Networks. The approach proposes the use of two Volumetric Fully Convolution Networks (V-Net) in sequence. The first network aims at locating the cardiac region, while the second segment the substructures of the cardiac area and the great vessels. Both networks are trained with the 2016 data set from the MICCAI Workshop on Whole-Heart and Great Vessel Segmentation of 3D Cardiovascular MR1 in Congenital Heart Disease (HVSMR). The experimental results show that the proposed method has a promising potential in decision-making in CHD cases (from MR images). The approach obtained on average 98.15% for Accuracy, 94.89% for Precision, 98.81% for Specificity Coefficient, 94.27% for Sensitivity Coefficient, 93.24% for Matthews Coefficient, 80.65% for Jaccard Index, 94.20% for Dice Coefficient, and 1.61 for the Hausdorff Distance. The proposed method enables the visualization and iteration of the segmented volume in 3D so that the doctor can analyze the entire structure of the heart along with the circulatory network.
机译:缺少心腔,心脏孔洞和异常连接导致每年数百人死亡。先天性心脏病(CHD)诊断和治疗决策所涉及的临床团队的选择必须一致。因此,在CHD的情况下,需要一种能够以3D有效,快速和准确地分割整个心脏和大血管的系统。本文建议通过使用级联体积完全卷积网络来满足这一需求。该方法建议按顺序使用两个体积完全卷积网络(V-Net)。第一个网络旨在定位心脏区域,而第二个网络则对心脏区域和大血管的子结构进行分段。这两个网络均接受了来自MICCAI关于先天性心脏病(HVSMR)的3D心血管MR1的全心和大血管分割的研讨会的2016年数据集的培训。实验结果表明,该方法在冠心病病例的决策中具有广阔的发展潜力(来自MR图像)。该方法的平均准确度为98.15%,精确度为94.89%,特异性系数为98.81%,灵敏度系数为94.27%,Matthews系数为93.24%,Jaccard指数为80.65%,骰子系数为94.20%,Hausdorff为1.61距离。所提出的方法可以在3D模式下可视化和分割体积,因此医生可以分析心脏的整个结构以及循环网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号