首页> 外文期刊>Future generation computer systems >Abnormal behavior detection using resource level to service level metrics mapping in virtualized systems
【24h】

Abnormal behavior detection using resource level to service level metrics mapping in virtualized systems

机译:在虚拟化系统中使用资源级别到服务级别指标映射的异常行为检测

获取原文
获取原文并翻译 | 示例

摘要

Recent years have seen a pronounced growth in research interest in resource management of virtualized systems. In that context, several techniques have been proposed. However, this task is complicated by the heterogeneity and virtualization of resources and the scalability and high-performance service requirements of Cloud Computing. Moreover, unpredictable situations such as fluctuations in resource demand or abnormal changes in systems behavior due, for instance, to emergency situations or special events, cause critical service performance degradation and costly SLA violations. Existing approaches are not generic, and are based mainly on excessive allocation of resources, a prospect which is not efficient, and involves resource loss. Further, they propose monitoring systems without a validation, using correspondence between service levels and resource levels and pattern detection. To overcome these limitations, in this work, we propose an effective, dynamic and real-time detection of abnormal behavior. Our approach is based on outlier detection techniques and employs a mapping between service level metrics and resource level metrics, as well as periodicity detection and effective system state analysis and notification. Experiments conducted on several types of workloads showed that our algorithm is capable of detecting unusual changes in both service level and resource level metrics. It is also able to map detected changes and provide corresponding notifications with an accuracy ranging from 92% to 100%. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,虚拟化系统资源管理方面的研究兴趣显着增长。在这种情况下,已经提出了几种技术。但是,资源的异构性和虚拟化以及云计算的可伸缩性和高性能服务要求使此任务变得复杂。此外,不可预测的情况(例如,由于紧急情况或特殊事件而导致的资源需求波动或系统行为的异常变化)会导致严重的服务性能下降和代价高昂的SLA违规。现有的方法不是通用的,并且主要基于过度分配资源,效率低下并且涉及资源损失的前景。此外,他们提出了使用服务级别和资源级别之间的对应关系以及模式检测的未经验证的监视系统。为了克服这些限制,在这项工作中,我们提出了一种有效,动态和实时的异常行为检测方法。我们的方法基于离群值检测技术,并在服务级别指标和资源级别指标之间进行了映射,并进行了周期性检测以及有效的系统状态分析和通知。在几种类型的工作负载上进行的实验表明,我们的算法能够检测服务级别和资源级别指标的异常变化。它还能够映射检测到的更改,并以92%到100%的精度提供相应的通知。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号