首页> 外文期刊>Future generation computer systems >Socio-spatial influence maximization in location-based social networks
【24h】

Socio-spatial influence maximization in location-based social networks

机译:基于位置的社交网络中的社会空间影响力最大化

获取原文
获取原文并翻译 | 示例

摘要

Identifying influential nodes in social networks is a key issue in many domains such as sociology, economy, biology, and marketing. A common objective when studying such networks is to find the minimum number of nodes with the highest influence. One might for example, maximize information diffusion in social networks by selecting some appropriate nodes. This is known as the Influence Maximization Problem (IMP). Considering the social aspect, most of the current works are based on the number, intensity, and frequency of node relations. On the spatial side, the maximization problem is denoted as the Location-Aware Influence Maximization Problem (LAIMP). When advertising for a new product, having access to people who have the highest social status and their neighbors are distributed evenly across a given region is often a key issue to deal with. Another valuable issue is to inform the maximum number of users located around an event, denoted as a query point, as quickly as possible. The research presented in this paper, along with a new measure of centrality that both considers network and spatial properties, extends the influence maximization problem to the location based social networks and denotes it hereafter as the Socio-Spatial Influence Maximization Problem (SSIMP). The focus of this approach is on the neighbor nodes and the concept of line graph as a possible framework to reach and analyze these neighbor nodes. Furthermore, we introduce a series of local and global indexes that take into account both the graph and spatial properties of the nodes in a given network. Moreover, additional semantics are considered in order to represent the distance to a query point as well as the measure of weighted farness. Overall, these indexes act as the components of the feature vectors and using k-nearest neighbors, the closest nodes to the 'ideal' node are determined as top-k nodes. The node with maximum values for feature vectors is considered as the 'ideal' node. The experimental evaluation shows the performance of the proposed method in determining influential nodes to maximize the socio-spatial influence in location-based social networks. (C) 2019 Elsevier B.V. All rights reserved.
机译:在社会学,经济,生物学和市场营销等许多领域,识别社交网络中的影响节点是一个关键问题。研究此类网络时,一个共同的目标是找到影响力最大的最少节点数。例如,可以通过选择一些适当的节点来最大化社交网络中的信息传播。这被称为影响最大化问题(IMP)。考虑到社会方面,当前的大多数工作都是基于节点关系的数量,强度和频率。在空间方面,最大化问题表示为位置感知影响最大化问题(LAIMP)。在为新产品做广告时,接触具有最高社会地位的人并且其邻居在给定区域中平均分布的机会通常是要解决的关键问题。另一个有价值的问题是尽快通知事件周围最大的用户数量(表示为查询点)。本文提出的研究,以及同时考虑网络和空间属性的新的中心度度量,将影响最大化问题扩展到基于位置的社交网络,并将其以下称为“社会空间影响最大​​化问题”(SSIMP)。这种方法的重点是邻居节点和折线图的概念,它是可能到达并分析这些邻居节点的框架。此外,我们介绍了一系列局部和全局索引,这些索引考虑了给定网络中节点的图形和空间属性。此外,考虑了附加语义以便表示到查询点的距离以及加权距离的度量。总体而言,这些索引充当特征向量的组成部分,并且使用k个最近邻居,将最接近“理想”节点的节点确定为前k个节点。具有特征向量最大值的节点被视为“理想”节点。实验评估表明,该方法在确定影响节点以最大化基于位置的社交网络中的社会空间影响方面的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号