首页> 外文期刊>Future generation computer systems >A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud-edge environment
【24h】

A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud-edge environment

机译:云边缘环境中基于方向性和非局部收敛的粒子群优化工作流调度

获取原文
获取原文并翻译 | 示例

摘要

With the increasing popularity of Internet of Things (IoT), edge computing has become the key driving force to provide computing resources, storage and network services closer to the edge on the basis of cloud computing. Workflow scheduling in such distributed environment is regarded as an NP-hard problem, and the existing approaches may not work well for task scheduling with multiple optimization goals in complex applications. As an intelligent algorithm, particle swarm optimization (PSO) has the advantages of fewer parameters, simpler algorithm and faster convergence speed, which is widely applied to workflow scheduling. However, there are also some shortcomings such as easy to fall into local optimum and sometimes difficult to obtain real optimal solution. To address this issue, first, the scheduling problem of workflow applications and objective function based on two optimized factors are clearly formalized, which can provide a theoretical foundation for workflow scheduling strategy. Then this paper proposes a novel directional and non-local-convergent particle swarm optimization (DNCPSO) that employs non-linear inertia weight with selection and mutation operations by directional search process, which can reduce the makespan and cost dramatically and obtain a compromising result. The results of simulation experiments based on various real and random workflow examples show that our DNCPSO can achieve better performance than other classical and improved algorithms, which sufficiently demonstrate the effectiveness and efficiency of DNCPSO. (C) 2019 Elsevier B.V. All rights reserved.
机译:随着物联网(IoT)的日益普及,边缘计算已成为在云计算的基础上提供更接近边缘的计算资源,存储和网络服务的主要驱动力。在这样的分布式环境中,工作流调度被认为是一个NP难题,而现有的方法对于复杂应用中具有多个优化目标的任务调度可能效果不佳。粒子群算法(PSO)作为一种智能算法,具有参数少,算法简单,收敛速度快等优点,已广泛应用于工作流调度中。但是,也存在一些缺点,例如容易陷入局部最优,有时难以获得真正的最优解。为了解决这个问题,首先,明确了工作流应用程序的调度问题和基于两个优化因素的目标函数,可以为工作流调度策略提供理论基础。然后本文提出了一种新的定向和非局部收敛粒子群优化算法(DNCPSO),该算法采用非线性惯性权重并通过定向搜索过程进行选择和变异操作,可以显着减少制造周期和成本,并获得折衷的结果。基于各种实际和随机工作流示例的仿真实验结果表明,我们的DNCPSO可以比其他经典算法和改进算法实现更好的性能,充分证明了DNCPSO的有效性和效率。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Future generation computer systems》 |2019年第8期|361-378|共18页
  • 作者单位

    Putian Univ, Sch Informat Engn, Putian, Peoples R China|Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China;

    Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China;

    Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China;

    Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China;

    Putian Univ, Sch Informat Engn, Putian, Peoples R China|Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China;

    Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW, Australia;

    Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW, Australia;

    Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China|Swinburne Univ Technol, Sch Software & Elect Engn, Melbourne, Vic, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; Edge computing; Workflow scheduling; Particle swarm optimization; Makespan and cost;

    机译:云计算;边缘计算;工作流调度;粒子群优化;制造周期和成本;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号