首页> 外文期刊>Future generation computer systems >CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey
【24h】

CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey

机译:基于机器学习的CPS数据流分析用于云和雾计算:一项调查

获取原文
获取原文并翻译 | 示例

摘要

Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between physical processes and cyber elements (computation, software and networking), which implies that data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the insights and the knowledge from the data streams generated by various sensors and other monitoring components embedded in the physical systems; (ii) it supports informed decision making; (iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates the integration of cyber and physical systems. There have been many successful applications of data streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to have a survey on the particularities of the application of machine learning techniques to the CPS domain. In particular, we explore how machine learning methods should be deployed and integrated in Cloud and Fog architectures for better fulfilment of the requirements of mission criticality and time criticality arising in CPS domains. To the best of our knowledge, this paper is the first to systematically study machine learning techniques for CPS data stream analytics from various perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS machine learning methods should be deployed in a Cloud and Fog architecture. (C) 2018 Elsevier B.V. All rights reserved.
机译:云计算和雾计算已成为物联网(IoT)和网络物理系统(CPS)的有希望的范例。 CPS的一个特点是物理过程和网络元素(计算,软件和网络)之间的相互反馈回路,这意味着数据流分析是CPS的核心组件之一。原因如下:(i)从物理系统中嵌入的各种传感器和其他监视组件生成的数据流中提取见解和知识; (ii)支持知情的决策; (iii)能够将物理过程反馈给网络对应方; (iv)它最终促进了网络和物理系统的集成。由机器学习技术提供支持的数据流分析在CPS系统上有许多成功的应用。因此,有必要对将机器学习技术应用于CPS域的特殊性进行调查。特别是,我们探索了如何在Cloud和Fog架构中部署和集成机器学习方法,以更好地满足CPS域中出现的任务关键性和时间关键性的要求。据我们所知,本文是第一个从各种角度系统研究CPS数据流分析的机器学习技术的方法,特别是从导致对如何在CPS机器学习方法中进行部署的讨论和指导的角度出发。云雾架构。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号