首页> 外文期刊>Future generation computer systems >GPU-based processing of Hartmann-Shack images for accurate and high-speed ocular wavefront sensing
【24h】

GPU-based processing of Hartmann-Shack images for accurate and high-speed ocular wavefront sensing

机译:基于GPU的Hartmann-Shack图像处理,可实现准确,高速的眼波前感测

获取原文
获取原文并翻译 | 示例

摘要

Hartmann-Shack aberrometry is a widely used technique in the field of visual optics but, high-speed and accurate processing of Hartmann-Shack images can be a computationally expensive/resource intensive task. While some advancements have been made in achieving high-performance processing units, they have not been specifically designed for processing Hartmann-Shack images of the human eye with Graphics Processing Units. In this work, we present the first full-Graphics Processing Unit implementation of a Hartmann-Shack sensor algorithm aimed at accurately measuring ocular aberrations at a high speed from high-resolution spot pattern images. The proposed algorithm, called PAPYCS (Parallel Pyramidal Centroid Search), is inherently parallel and performs a very robust centroid search to avoid image noise and other artifacts. This is a field where the use of Graphics Processing Units have not been exploited despite the fact that they can boost Adaptive Optics systems and related closed-loop approaches. Our proposed implementation achieves processing speeds of 380 frames per second for high resolution (1280x1280 pixels) images, in addition to showing a high resilience to system and image artifacts that appear in Hartmann-Shack images from human eyes: more than 98% of the Hartmann-Shack images, with aberrations of up to 4 mu m Root Mean Square for a 5.12mm pupil diameter, were measured with less than 0.05 mu m Root Mean Square Error, which is basically negligible for ocular aberrations. (C) 2018 The Authors. Published by Elsevier B.V.
机译:Hartmann-Shack像差法是视觉光学领域中一种广泛使用的技术,但是,对Hartmann-Shack图像进行高速,准确的处理可能是一项计算量大/资源密集的任务。尽管在实现高性能处理单元方面已取得了一些进步,但它们并不是专门为使用图形处理单元处理人眼的Hartmann-Shack图像而设计的。在这项工作中,我们提出了Hartmann-Shack传感器算法的第一个全图形处理单元实现,旨在从高分辨率的斑点图案图像中高速准确地测量眼像差。所提出的算法称为PAPYCS(并行金字塔形质心搜索),本质上是并行的,并且执行非常强大的质心搜索以避免图像噪声和其他伪像。尽管图形处理单元可以增强自适应光学系统和相关的闭环方法,但该领域仍未得到使用。我们的实施方案对高分辨率(1280x1280像素)图像实现了每秒380帧的处理速度,此外还显示出对人眼在Hartmann-Shack图像中出现的系统和图像伪像的高弹性:超过98%的Hartmann -测量的瞳孔直径为5.12mm时,像差最大为4微米的均方根像的均方根误差小于0.05微米的均方根误差,对于眼像差基本可以忽略不计。 (C)2018作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号