首页> 外文期刊>Future generation computer systems >Reward-based Markov chain analysis adaptive global resource management for inter-cloud computing
【24h】

Reward-based Markov chain analysis adaptive global resource management for inter-cloud computing

机译:用于云间计算的基于奖励的马尔可夫链分析自适应全局资源管理

获取原文
获取原文并翻译 | 示例

摘要

AbstractThe cloud IaaS provider supports diverse services for users to access big data of the real-time entertainment or the non-real-time working traffic. The IaaS provider builds data centers that include different types cloud resources/equipment, e.g., physical machines, virtual machines, networking, storages, power equipment, etc., and significantly increases cloud cost. An efficient cloud resource management is required for the cloud provider to maximize system reward while satisfying the QoS of various SLAs. This paper proposes a Reward-based adaptive global Cloud Resource Management (RCRM) that consists of three main contributions: the Large-scale and Small-scale traffic Predictions (LSP), Adaptive Cloud resource Allocation, and Maximum Net Profit. The M/M/m/m Markov chain model analyzes the service blocking and the required number of VMs for each request. For maximizing the system net profit, the cloud providers always oversell cloud resources. However, the cost of deploying data centers at different areas in the world is different. This paper adopts the VM migration-in/migration-out and task redirection to adaptively allocate cloud resources among global data centers. Numerical results demonstrate RCRM outperforms the others in dropping probability, SLA violation, violation penalty and net profit. Furthermore, the dropping probability of analysis is very close to that of simulation and justifies the correctness of the proposed Markov chain model.HighlightsAdopting the large-scale and small-scale traffic predictions.Based on the Markov chain model to analyze the service blocking and the required number of VMs for each request.Maximizing the net profit of the cloud provider.
机译: 摘要 云IaaS提供程序支持多种服务,供用户访问云服务器的大数据实时娱乐或非实时工作流量。 IaaS提供商构建的数据中心包括不同类型的云资源/设备,例如物理机,虚拟机,网络,存储,电源设备等,并显着增加了云成本。云提供商需要有效的云资源管理,以在满足各种SLA的QoS的同时最大化系统回报。本文提出了一种基于奖励的自适应全球云资源管理(RCRM),它包括三个主要贡献:大型和小型流量预测(LSP),自适应云资源分配和最大净利润。 M / M / m / m马尔可夫链模型分析服务阻塞和每个请求所需的VM数量。为了使系统净利润最大化,云提供商始终会超额出售云资源。但是,在世界不同地区部署数据中心的成本是不同的。本文采用虚拟机迁移/迁移和任务重定向的方法,在全球数据中心之间自适应地分配云资源。数值结果表明,RCRM在下降概率,SLA违规,违规罚款和净利润方面均优于其他。此外,分析的下降概率非常接近于模拟,并证明了所提出的马尔可夫链模型的正确性。 突出显示 采用大型和小型流量预测。 基于马尔可夫链模型来分析服务阻塞和每个请求所需的VM数量。 最大化云提供商的净利润。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号