首页> 外文期刊>Future generation computer systems >Performance prediction model for cloud service selection from smart data
【24h】

Performance prediction model for cloud service selection from smart data

机译:从智能数据中选择云服务的性能预测模型

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is a computing model that has experienced significant growth in the world in contemporary time. Cloud providers offer services to consumers at different levels of performance, costs, and configurations. Many enterprises and organizations are planning to move their services to a cloud platform. The most challenging issue for them is choosing the most appropriate services that meet their requirements. In this paper, we try to tackle this challenge by automating the selection process based on actual workload pattern from Smart data and resource demand acquired from existing service history data. An automatic performance prediction model based on Naïve Bayes classifiers is proposed to predict the performance metrics of cloud nodes with respect to different options for configuration of their resources. We examined Naïve Bayes classifier along with kernel density estimation to solve the zero variance of feature distribution and enhance the accuracy of predictions. We also evaluated our model using a detailed one-year dataset from a realistic environment with thousands of records and hundreds of machines. A simulation on the MATLAB was performed and the results showed that the proposed model indicates how naïve Bayes can provide accurate and efficient results.
机译:云计算是一种在当今世界上经历了显着增长的计算模型。云提供商以不同的性能,成本和配置水平向消费者提供服务。许多企业和组织正计划将其服务移至云平台。对于他们来说,最具挑战性的问题是选择满足他们要求的最合适的服务。在本文中,我们试图通过基于智能数据的实际工作量模式和从现有服务历史数据获取的资源需求的自动化工作流程来自动选择流程,以应对这一挑战。提出了一种基于朴素贝叶斯分类器的自动性能预测模型,用于针对云资源配置的不同选项来预测云节点的性能指标。我们研究了朴素贝叶斯分类器以及核密度估计,以解决特征分布的零方差并提高预测的准确性。我们还使用了详细的一年数据集来评估模型,该数据集来自具有数千条记录和数百台机器的实际环境。在MATLAB上进行了仿真,结果表明所提出的模型表明了朴素的贝叶斯如何能够提供准确而有效的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号