首页> 外文期刊>Future generation computer systems >Decentralized self-adaptation for elastic Data Stream Processing
【24h】

Decentralized self-adaptation for elastic Data Stream Processing

机译:分散式自适应,用于弹性数据流处理

获取原文
获取原文并翻译 | 示例

摘要

Data Stream Processing (DSP) applications are widely used to develop new pervasive services, which require to seamlessly process huge amounts of data in a near real-time fashion. To keep up with the high volume of daily produced data, these applications need to dynamically scale their execution on multiple computing nodes, so to process the incoming data flow in parallel. In this paper, we present a hierarchical distributed architecture for the autonomous control of elastic DSP applications. It consists of a two-layered hierarchical solution, where a centralized per-application component coordinates the run-time adaptation of subordinated distributed components, which, in turn, locally control the adaptation of single DSP operators. Thanks to its features, the proposed solution can efficiently run in large-scale Fog computing environments. Exploiting this framework, we design several distributed self-adaptation policies, including a popular threshold-based approach and two reinforcement learning solutions. We integrate the hierarchical architecture and the devised self-adaptation policies in Apache Storm, a popular open-source DSP framework. Relying on the DEBS 2015 Grand Challenge as a benchmark application, we show the benefits of the presented self-adaptation policies, and discuss the strengths of reinforcement learning based approaches, which autonomously learn from experience how to optimize the application performance. (C) 2018 Elsevier B.V. All rights reserved.
机译:数据流处理(DSP)应用程序被广泛用于开发新的普及服务,这些服务要求以近实时的方式无缝处理大量数据。为了跟上每天产生的大量数据,这些应用程序需要动态地扩展其在多个计算节点上的执行,以便并行处理传入的数据流。在本文中,我们提出了一种用于弹性DSP应用程序自主控制的分层分布式体系结构。它由一个两层的分层解决方案组成,其中一个集中的每个应用程序组件协调从属分布式组件的运行时适应,进而在本地控制单个DSP运算符的适应。由于其功能,所提出的解决方案可以在大型Fog计算环境中有效运行。利用此框架,我们设计了几种分布式的自适应策略,包括流行的基于阈值的方法和两个强化学习解决方案。我们在一个流行的开源DSP框架Apache Storm中集成了层次结构和设计的自适应策略。依靠DEBS 2015大挑战作为基准应用程序,我们展示了所提出的自适应策略的好处,并讨论了基于强化学习的方法的优势,这些方法可以从经验中自主学习如何优化应用程序性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号