首页> 外文期刊>Future generation computer systems >Privacy-protected statistics publication over social media user trajectory streams
【24h】

Privacy-protected statistics publication over social media user trajectory streams

机译:社交媒体用户轨迹流上受隐私保护的统计发布

获取原文
获取原文并翻译 | 示例

摘要

An increasing amount of user location information is being generated due to the widespread use of social network applications and the ubiquitous adoption of mobile and wearable technologies. This data can be analysed to identify precise trajectories of individuals where they went and when they were there. This is an obvious privacy issue, yet publication of real-time aggregate over such location streams can provide valuable resources for researchers and government agencies, e.g., in case of pandemics it would be very useful to identify who might have come into contact with an infected individual at a given time. Differential privacy techniques have become popular and widely adopted to address privacy concerns. However, there are three key issues that limit the application of existing differential privacy approaches to user trajectory data: (a) the heterogeneous nature of the trajectories, (b) uniform sliding window mechanisms do not meet individual privacy requirements and (c) limited privacy budgets and impact on data utility when applied to infinite data streams. To tackle these problems, this paper proposes a private real-time trajectory stream statistics publication mechanism utilizing differential privacy (DP-PSP). To relieve the heterogeneity issues, anchor point discovery (e.g., fixed locations like museums, parks, etc.) and road segmenting mechanisms are proposed. We provide an adaptive w-step sliding window approach that allows users to specify their own dynamic privacy budget distribution to optimize their own privacy budget. To preserve the data utility, we present multi-timestamp prediction models and private k-nearest neighbour selection and perturbation algorithms to reduce the amount of perturbation distortion induced through the differential privacy mechanism. Comprehensive experiments over real-life location-based social network user trajectories show that DP-PSP provides private data aggregate over infinite trajectory streams and boosts the utility and quality of the perturbed aggregation without compromising individual privacy. (C) 2017 Elsevier B.V. All rights reserved.
机译:由于社交网络应用程序的广泛使用以及移动和可穿戴技术的普遍采用,因此生成了越来越多的用户位置信息。可以对这些数据进行分析,以识别他们去过的地方和在那里的时间的精确轨迹。这是一个明显的隐私问题,但是在这样的位置流上发布实时聚合可以为研究人员和政府机构提供宝贵的资源,例如,在大流行的情况下,确定谁可能与感染者接触非常有用。在给定时间的个人。差异隐私技术已变得流行并被广泛采用以解决隐私问题。但是,存在三个关键问题,这些问题限制了将现有的差异隐私方法应用于用户轨迹数据:(a)轨迹的异构性质,(b)统一的滑动窗口机制无法满足个人隐私要求,并且(c)隐私受到限制应用于无限数据流时的预算和对数据实用程序的影响。为了解决这些问题,本文提出了一种利用差分隐私(DP-PSP)的私有实时轨迹流统计发布机制。为了缓解异质性问题,提出了锚点发现(例如,诸如博物馆,公园等固定位置)和道路分割机制的建议。我们提供了一种自适应的w步滑动窗口方法,该方法允许用户指定自己的动态隐私预算分配来优化自己的隐私预算。为了保留数据效用,我们提出了多时间戳预测模型以及私有k最近邻居选择和扰动算法,以减少通过差分隐私机制引起的扰动失真量。对基于位置的现实生活中的社交网络用户轨迹进行的综合实验表明,DP-PSP可在无限轨迹流上提供私有数据聚合,并在不损害个人隐私的情况下提高了扰动聚合的效用和质量。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号