首页> 外文期刊>Future generation computer systems >Predicting cloud performance for HPC applications before deployment
【24h】

Predicting cloud performance for HPC applications before deployment

机译:部署前预测HPC应用程序的云性能

获取原文
获取原文并翻译 | 示例

摘要

To reduce the capital investment required to acquire and maintain a high performance computing cluster, today many HPC users are moving to cloud. When deploying an application in the cloud, the users may (a) fail to understand the interactions of the application with the software layers implementing the cloud system, (b) be unaware of some hardware details of the cloud system, and (c) fail to understand how sharing part of the cloud system with other users might degrade application performance. These misunderstandings may lead the users to select suboptimal cloud configurations in terms of cost or performance.In this work we propose a machine-learning methodology to support the user in the selection of the best cloud configuration to run the target workload before deploying it in the cloud. This enables the user to decide if and what to buy before facing the cost of porting and analyzing the application in the cloud. We couple a cloud-performance-prediction model (CP) on the cloud-provider side with a hardware independent profile-prediction model (PP) on the user-side. PP captures the application-specific scaling behavior. The user profiles the target application while processing small datasets on small machines she (or he) owns, and applies machine learning to generate PP to predict the profiles for larger datasets to be processed in the cloud. CP is generated by the cloud provider to learn the relationships between the hardware-independent profile and cloud performance starting from the observations gathered by executing a set of training applications on a set of training cloud configurations. Since the profile data in use is hardware-independent the user and the provider can generate the prediction models independently possibly on heterogeneous machines.We apply the prediction models to Fortran-MPI benchmarks. The resulting relative error is below 12% for CP and 30% for PP. The optimal Pareto front of cloud configurations finally found when maximizing performance and minimizing execution cost on the prediction models is at most 25% away from the actual optimal solutions. (C) 2017 Elsevier B.V. All rights reserved.
机译:为了减少获取和维护高性能计算集群所需的资本投资,如今,许多HPC用户正在迁移到云中。在云中部署应用程序时,用户可能(a)无法理解应用程序与实现云系统的软件层的交互,(b)不了解云系统的某些硬件细节,并且(c)失败了解与其他用户共享云系统的一部分可能如何降低应用程序性能。这些误解可能会导致用户在成本或性能方面选择次优的云配置。在这项工作中,我们提出了一种机器学习方法,以支持用户选择最佳的云配置以运行目标工作负载,然后再将其部署到服务器中。云。这使用户能够在面对迁移和分析云中的应用程序的成本之前决定是否购买以及购买什么。我们将云提供者端的云性能预测模型(CP)与用户端的独立于硬件的概要文件预测模型(PP)耦合在一起。 PP捕获特定于应用程序的扩展行为。用户在她(或他)拥有的小型计算机上处​​理小型数据集时,配置目标应用程序,并应用机器学习生成PP以预测要在云中处理的较大数据集的配置文件。云提供商通过生成CP来学习独立于硬件的配置文件与云性能之间的关系,该关系从对一组训练云配置执行一组训练应用程序所收集的观察结果开始。由于使用的配置文件数据与硬件无关,因此用户和提供者可以在异构机器上独立生成预测模型。我们将预测模型应用于Fortran-MPI基准测试。对于CP,所得相对误差低于12%,对于PP,低于30%。在预测模型上实现性能最大化和执行成本最小化时,最终找到的最佳云配置Pareto前沿距离实际最佳解决方案最多25%。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号