首页> 外文期刊>Future generation computer systems >Memory-efficient Kronecker algorithms with applications to the modelling of parallel systems
【24h】

Memory-efficient Kronecker algorithms with applications to the modelling of parallel systems

机译:内存有效的Kronecker算法及其在并行系统建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

We present a new algorithm for computing the solution of large Markov chain models whose generators can be represented in the form of a generalized tensor algebra, such as networks of stochastic automata. The tensor structure inherently involves a product state space but, inside this product state space, the actual reachable state space can be much smaller. For such cases, we propose an improvement of the standard numerical algorithm, the so-called "shuffle algorithm", which necessitates only vectors of the size of the actual state space. With this contribution, numerical algorithms based on tensor products can now handle larger models.
机译:我们提出了一种新的算法,用于计算大型马尔可夫链模型的解,其生成器可以以广义张量代数的形式表示,例如随机自动机网络。张量结构固有地涉及乘积状态空间,但是在该乘积状态空间内部,实际可到达状态空间可以小得多。对于这种情况,我们提出了标准数值算法的改进,即所谓的“混洗算法”,它仅需要实际状态空间大小的向量。有了这个贡献,基于张量积的数值算法现在可以处理更大的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号