首页> 外文期刊>Future generation computer systems >Poisonedwater: An improved approach for accurate reputation ranking in P2P networks
【24h】

Poisonedwater: An improved approach for accurate reputation ranking in P2P networks

机译:毒水:一种改进的方法,可在P2P网络中进行准确的信誉排名

获取原文
获取原文并翻译 | 示例

摘要

It is argued that social-network based (or group-based) trust metric is effective in resisting various attacks, which evaluates groups of assertions "in tandem", and generally computes peers' reputation ranks according to peers' social positions in a trust graph. However, unfortunately, most group-based trust metrics are vulnerable to the attack of "front peers", which represents malicious colluding peers who always cooperate with others in order to increase their reputation, and then provide misinformation to promote actively malicious peers. In traditional reputation ranking algorithms, like Eigentrust and Powertrust, etc., front peers could pass most of their reputation value to malicious friends, which leads to malicious peers accruing an improperly high reputation ranking. This paper proposes an alternative social-network based reputation ranking algorithm called Poisonedwater, to infer more accurate reputation ranks then existing schemes, when facing front peers attack. Our contributions are twofold: first we design the framework of the Poisonedwater approach including the following three procedures: (1) the propagation of Poisoned Water (PW): through direct transactions or observations, several malicious users are identified, termed as the poisoned seeds, and the PW will iteratively flood from those poisoned seeds along the reverse indegree direction in the trust graph; (2) the determination of adaptive Spreading Factor (SF) from PW level: based on the logistic model, PW level will correspondingly shrink each peer's adaptive SF, which can determine how much percentage of each peer's reputation could be propagated to its neighbors, and can be regarded as indicative of the peer's recommendation ability; (3) the enhanced group-based reputation ranking algorithm with adaptive SF which seamlessly integrates peers' recommendation ability to infer the more accurate reputation ranking for each peer; second, we experimentally analyze the mathematical implication of the Poisonedwater approach, and investigate the effect of various parameters on the performance of Poisonedwater. Simulation results show that, in comparison with Eigentrust and Powertrust, Poisonedwater can significantly reduce the ranking error ratio up to 20%, when the P2P environment is relatively hostile (i.e., there exists a relatively high percentage of malicious peers and front peers).
机译:有人认为,基于社交网络(或基于组)的信任度指标可有效抵御各种攻击,它可以“一前一后”评估一组断言,并通常根据信任图中的对等点的社会地位来计算对等点的声誉等级。但是,不幸的是,大多数基于组的信任度量都容易受到“前对等端”的攻击,“前对等端”表示恶意勾结的对等端,它们总是与他人合作以提高其信誉,然后提供错误信息以主动推广恶意对等端。在传统的信誉排名算法(例如Eigentrust和Powertrust等)中,前台对等点会将其大部分信誉值传递给恶意朋友,这导致恶意对等点获得了不正确的较高信誉排名。本文提出了另一种基于社交网络的信誉排名算法,称为Poisonedwater,以在面对前辈攻击时推断出比现有方案更准确的信誉排名。我们的贡献是双重的:首先,我们设计了毒水方法的框架,其中包括以下三个过程:(1)毒水的传播:通过直接交易或观察,发现了几个恶意用户,称为毒种子, PW将沿着信任图中的反向度方向从那些有毒种子迭代地泛洪; (2)从PW级别确定自适应扩展因子(SF):基于逻辑模型,PW级别将相应地缩小每个对等方的自适应SF,这可以确定每个对等方的信誉可传播到其邻居的百分比,以及可以被认为是同伴的推荐能力的指标; (3)带有自适应SF的增强的基于组的信誉排名算法,该算法无缝集成了对等点的推荐能力,以推断每个对等点的更准确的信誉排名;其次,我们通过实验分析了毒化水方法的数学含义,并研究了各种参数对毒化水性能的影响。仿真结果表明,与Eigentrust和Powertrust相比,当P2P环境相对敌对时(即恶意对等端和前端对等端的百分比较高),Poisonedwater可以将排名错误率显着降低高达20%。

著录项

  • 来源
    《Future generation computer systems》 |2010年第8期|P.1317-1326|共10页
  • 作者

    Wang Yufeng; rnAkihiro Nakao;

  • 作者单位

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China Nanjing University of Posts and Telecommunications, Nanjing, China National Institute of Information and Communications Technology (NICT), Japan;

    rnUniversity of Tokyo, Japan National Institute of Information and Communications Technology (NICT), Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    trust and reputation ranking; P2P; social-network;

    机译:信任和声誉排名;P2P;社交网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号