首页> 外文期刊>Future generation computer systems >A hybrid collaborative filtering recommendation mechanism for P2P networks
【24h】

A hybrid collaborative filtering recommendation mechanism for P2P networks

机译:P2P网络的混合协作过滤推荐机制

获取原文
获取原文并翻译 | 示例

摘要

With the increasing number of commerce facilities using peer-to-peer (P2P) networks, challenges exist in recommending interesting or useful products and services to a particular customer. Collaborative Filtering (CF) is one of the most successful techniques that attempts to recommend items (such as music, movies, web sites) which are likely to be of interest to the people. However, conventional collaborative filtering encounters a number of challenges on its recommendation accuracy. One of the most important challenges may be due to the sparse attributes inherent to the rating data. Another important challenge is that existing CF methods consider mainly user-based or item-based ratings respectively. In this paper a P2P-based hybrid collaborative filtering mechanism for the support of combining user-based and item attribute-based ratings is considered. We take advantage of the inherent item attributes to construct a Boolean matrix to predict the blank elements for a sparse user-item matrix. Furthermore, a Hybrid collaborative filtering (HCF) algorithm is presented to improve the predictive accuracy. Case studies and experiment results illustrate that our approaches not only contribute to predicting the unrated blank data for a sparse matrix but also improve the prediction accuracy as expected.
机译:随着使用对等(P2P)网络的商务设施的数量不断增加,向特定客户推荐有趣或有用的产品和服务时面临着挑战。协同过滤(CF)是最成功的技术之一,它试图推荐人们可能会感兴趣的项目(例如音乐,电影,网站)。然而,常规协作过滤在其推荐准确性上遇到许多挑战。最重要的挑战之一可能是评级数据固有的稀疏属性。另一个重要的挑战是,现有的CF方法主要分别考虑基于用户或基于项目的评级。在本文中,考虑了一种基于P2P的混合协作过滤机制,以支持将基于用户和基于项目属性的评级组合在一起。我们利用固有项目属性来构造布尔矩阵,以预测稀疏用户项矩阵的空白元素。此外,提出了一种混合协同过滤(HCF)算法,以提高预测准确性。案例研究和实验结果表明,我们的方法不仅有助于预测稀疏矩阵的未评级空白数据,而且可以按预期提高预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号