首页> 外文期刊>Future generation computer systems >A novel multi-agent reinforcement learning approach for job scheduling in Grid computing
【24h】

A novel multi-agent reinforcement learning approach for job scheduling in Grid computing

机译:网格计算中作业调度的多主体强化学习新方法

获取原文
获取原文并翻译 | 示例

摘要

Grid computing utilizes distributed heterogeneous resources to support large-scale or complicated computing tasks, and an appropriate resource scheduling algorithm is fundamentally important for the success of Grid applications. Due to the complex and dynamic properties of Grid environments, traditional model-based methods may result in poor scheduling performance in practice. Scalability and adaptability are among the key objectives of Grid job scheduling. In this paper, a novel multi-agent reinforcement learning method, called ordinal sharing learning (OSL) method, is proposed for job scheduling problems, especially, for realizing load balancing in Grids. The approach circumvents the scalability problem by using an ordinal distributed learning strategy, and realizes multi-agent coordination based on an information-sharing mechanism with limited communication. Simulation results show that the OSL method can achieve the goal of load balancing effectively, and its performance is even comparable to some centralized scheduling algorithm in most cases. The convergence property and adaptability of the proposed method are also illustrated.
机译:网格计算利用分布式异构资源来支持大规模或复杂的计算任务,而合适的资源调度算法对于网格应用程序的成功至关重要。由于网格环境的复杂和动态特性,传统的基于模型的方法在实践中可能导致较差的调度性能。可伸缩性和适应性是Grid作业调度的主要目标之一。针对作业调度问题,特别是实现网格中的负载均衡,提出了一种新颖的多主体强化学习方法,称为顺序共享学习(OSL)方法。该方法通过使用有序分布式学习策略来规避可伸缩性问题,并在通信受限的情况下基于信息共享机制实现多主体协调。仿真结果表明,OSL方法可以有效地达到负载均衡的目的,其性能在大多数情况下甚至可以与某些集中式调度算法相媲美。还说明了该方法的收敛性和适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号