首页> 外文期刊>Future generation computer systems >Design and implementation of adaptive power-aware virtual machine provisioner (APA-VMP) using swarm intelligence
【24h】

Design and implementation of adaptive power-aware virtual machine provisioner (APA-VMP) using swarm intelligence

机译:使用群体智能的自适应功率感知虚拟机供应商(APA-VMP)的设计和实现

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing aims at providing dynamic leasing of server capabilities as scalable, virtualized services to end users. Our work focuses on the Infrastructure as a Service (laaS) model where custom Virtual Machines (VM) are launched in appropriate servers available in a data center. The cloud data center taken into consideration is heterogeneous and large scale in nature. Such a resource pool is basically characterized by high resource dynamics caused by non-linear variation in the availability of processing elements, memory size, storage capacity, bandwidth and power drawn resulting from the sporadic nature of workload. Apart from the said resource dynamics, our proposed work also considers the processor transitions to various sleep states and their corresponding wake up latencies that are inherent in contemporary enterprise servers. The primary objective of the proposed metascheduler is to map efficiently a set of VM instances onto a set of servers from a highly dynamic resource pool by fulfilling resource requirements of maximum number of workloads. As the cloud data centers are overprovisioned to meet the unexpected workload surges, huge power consumption has become one of the major issues of concern. We have proposed a novel metascheduler called Adaptive Power-Aware Virtual Machine Provisioner (APA-VMP) that schedules the workload in such a way that the total incremental power drawn by the server pool is minimum without compromising the performance objectives. The APA-VMP makes use of swarm intelligence methodology to detect and track the changing optimal target servers for VM placement very efficiently. The scenario was experimented by novel Self-adaptive Particle Swarm Optimization (SAPSO) for VM provisioning, which makes best possible use of the power saving states of idle servers and instantaneous workload on the operational servers. It is evident from the results that there is a significant reduction in the power numbers against the existing strategies.
机译:云计算旨在向最终用户提供服务器功能的动态租赁,作为可扩展的虚拟化服务。我们的工作集中在基础架构即服务(laaS)模型上,其中自定义虚拟机(VM)在数据中心可用的适当服务器中启动。考虑到的云数据中心本质上是异构的并且是大规模的。这种资源池的基本特征是,由于工作负载的零散性质而导致的处理元素的可用性,内存大小,存储容量,带宽和功耗的非线性变化导致高资源动态。除了上述资源动态之外,我们提出的工作还考虑了处理器向各种睡眠状态的转换以及它们在当代企业服务器中固有的相应唤醒延迟。提出的元调度程序的主要目标是通过满足最大工作负载的资源要求,将高动态资源池中的一组VM实例有效地映射到一组服务器上。随着云数据中心的超额配置以应对意外的工作负载激增,巨大的功耗已成为人们关注的主要问题之一。我们已经提出了一种新型的元调度程序,称为“自适应功率感知虚拟机预配置程序(APA-VMP)”,该调度程序以一种在不影响性能目标的前提下最小化服务器池所消耗的总增量功率的方式调度工作负载。 APA-VMP利用群体智能方法来非常有效地检测和跟踪不断变化的最佳目标服务器以进行虚拟机放置。该方案已通过针对VM调配的新型自适应粒子群优化(SAPSO)进行了实验,该方案可最大程度地利用空闲服务器的节能状态和运行服务器上的瞬时工作负载。从结果可以明显看出,与现有策略相比,功率数量大大减少了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号