首页> 外文期刊>Future generation computer systems >Master-worker model for MapReduce paradigm on the TILE64 many-core platform
【24h】

Master-worker model for MapReduce paradigm on the TILE64 many-core platform

机译:TILE64多核平台上MapReduce范例的主工人模型

获取原文
获取原文并翻译 | 示例

摘要

MapReduce is a popular programming paradigm for processing big data. It uses the master-worker model, which is widely used on distributed and loosely coupled systems such as clusters, to solve large problems with task parallelism. With the ubiquity of many-core architectures in recent years and foreseeable future, the many-core platform will be one of the main computing platforms to execute MapReduce programs. Therefore, it is essential to optimize MapReduce programs on many-core platforms. Optimizations of parallel programs for a many-core platform are viewed as a multifaceted problem, where both system and architectural factors should be taken into account. In this paper, we look into the problem by constructing a master-worker model for MapReduce paradigm on the TILE64 many-core platform. We investigate master share and worker share schemes for implementation of a MapReduce library on the TILE64. The theoretical analysis shows that the worker share scheme is inherently better for implementation of MapReduce library on the TILE64 many-core platform.
机译:MapReduce是用于处理大数据的流行编程范例。它使用master-worker模型,该模型广泛用于分布式和松散耦合的系统(例如集群)上,以解决任务并行性带来的大问题。近年来以及可预见的未来,随着多核架构的普及,多核平台将成为执行MapReduce程序的主要计算平台之一。因此,在多核平台上优化MapReduce程序至关重要。针对多核平台的并行程序的优化被视为一个多方面的问题,应同时考虑系统和体系结构因素。在本文中,我们通过在TILE64多核平台上构建MapReduce范例的主模型来研究这个问题。我们研究了在TILE64上实现MapReduce库的主共享和辅助共享方案。理论分析表明,在TILE64多核平台上实施MapReduce库时,工作者共享方案本质上更好。

著录项

  • 来源
    《Future generation computer systems》 |2014年第7期|19-30|共12页
  • 作者

    Xuan-Yi Lin; Yeh-Ching Chung;

  • 作者单位

    Department of Computer Science, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu City 30013, Taiwan;

    Department of Computer Science, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu City 30013, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Many-core; Master-worker; MapReduce; Shared memory; TILE64;

    机译:多核;大师级工人;MapReduce;共享内存;标题64;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号