首页> 外文期刊>Future generation computer systems >Multi-spectral and panchromatic image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications
【24h】

Multi-spectral and panchromatic image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications

机译:平稳小波变换和群花授粉优化的多光谱和全色图像融合方法在遥感中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a multi-spectral (MS) and panchromatic (Pan) image fusion approach based on the flower pollination algorithm optimization (FPA). The FPA is used to get an optimal fused image. The image fusion quality depends on the choice of the weight of fusion rule. The proposed approach uses FPA to optimize the weights of a fusion rule to make a perfect image fusion process. FPA is a nature-inspired algorithm, based on the characteristics of a flower pollination process. FPA averts trapping in local optimal solution. In this paper, the remote sensing image fusion based on flower pollination algorithm is compared to several states of the art image fusion approaches including Intensity-hue-saturation (IHS) image fusion; stationary wavelets transform image fusion based on the average weight fusion rule (SWT-AW) and the image fusion based on the particle swarm optimization (PSO). The experimental results used MODIS satellite series with spatial resolutions 250 m, 500 m, and 1 km, which are low spatial resolution and multispectral images; and Pan image of SPOT satellite is high spatial resolution 10 m to produce synthetic imagery at SPOT spatial resolutions and MODIS multispectral resolution at the same time. The experimental results prove that the proposed remote sensing image fusion approach can illustrate a better performance than the other approaches. The experimental results show that the approach offers up to 20% enhancement in Peak Signal to Noise Ratio (PSNR), 1% enhancement in Structural Similarity Index (SSIM), 1% and 0.5% enhancement in entropy information (EI) than best existing particle swarm optimization (PSO) approach. The results indicate that the proposed approach outperforms over existing approaches.
机译:本文提出了一种基于花授粉算法优化(FPA)的多光谱(MS)和全色(Pan)图像融合方法。 FPA用于获取最佳的融合图像。图像融合质量取决于融合规则权重的选择。所提出的方法使用FPA来优化融合规则的权重,以实现完美的图像融合过程。 FPA是一种自然灵感算法,基于花朵授粉过程的特征。 FPA避免陷入局部最优解决方案。本文将基于花粉传粉算法的遥感图像融合与强度融合(IHS)图像融合等几种先进的图像融合方法进行了比较。平稳小波变换基于平均权重融合规则(SWT-AW)的图像融合和基于粒子群优化(PSO)的图像融合。实验结果使用了空间分辨率为250 m,500 m和1 km的MODIS卫星系列,这是低空间分辨率和多光谱图像。 SPOT卫星的全景图像具有10 m的高空间分辨率,可以同时生成SPOT空间分辨率和MODIS多光谱分辨率的合成图像。实验结果证明,所提出的遥感图像融合方法比其他方法具有更好的性能。实验结果表明,与现有的最佳粒子相比,该方法可将峰值信噪比(PSNR)提高20%,结构相似度指数(SSIM)提高1%,熵信息(EI)分别提高1%和0.5%群优化(PSO)方法。结果表明,所提出的方法优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号