首页> 外文期刊>Future generation computer systems >A distributed sensor management for large-scale IoT indoor acoustic surveillance
【24h】

A distributed sensor management for large-scale IoT indoor acoustic surveillance

机译:用于大规模物联网室内声学监控的分布式传感器管理

获取原文
获取原文并翻译 | 示例

摘要

The recent world events have underscored the need for large area surveillance systems. Such systems require effective sensing and collaborative decision-making to operate in highly dynamic environments with demanding time constraints. The Pervasive Internet of Things (IoT) is a novel paradigm that enables detailed characterization of the real physical applications. To this end, a pervasive IoT surveillance applications can offer an effective framework to collect situation-aware knowledge that is vital for planning effective security measures. Nevertheless, most state-of-the-art focus only on visual abnormal event recognition using centralized systems, thus, ignoring the need for distributed operation to enable large-scale IoT surveillance systems. This paper presents a novel Sensor Management (SM) framework for pervasive IoT acoustic surveillance, IntelliSurv, that automatically detects and localizes abnormal acoustic events in a distributed collaborative manner. The proposed framework coordinates the sensing resources using a novel team-theoretic SM, based on the Belief–Desire–Intention (BDI) model, for autonomous decision-making and resource allocation. The proposed abnormal event recognition module, using Support Vector Machines (SVM) and Linear Discriminate Analysis (LDA) classifiers, relies on audio information to recognize human screams or high-stress speech signals. The simulation scenario in this work is the surveillance of the Waterloo International Airport implemented using Jadex platform and Speech Under Simulated and Actual Stress (SUSAS) database. The simulation results show the merits of the proposed IntelliSurv framework, compared to the popular centralized systems, over varying network size, number of threats, Signal-to-Noise Ratios (SNR), tracking quality, and energy consumption.
机译:最近的世界大事突显了对大面积监视系统的需求。这样的系统需要有效的感测和协作决策,才能在具有严格时间限制的高度动态环境中运行。普及物联网(IoT)是一种新颖的范例,可实现对真实物理应用程序的详细表征。为此,广泛的IoT监视应用程序可以提供一个有效的框架来收集情况感知知识,这对于规划有效的安全措施至关重要。尽管如此,大多数最新技术仅集中于使用集中式系统的视觉异常事件识别,因此,无需进行分布式操作即可启用大规模物联网监视系统。本文提出了一种用于普及的IoT声音监视的新型传感器管理(SM)框架IntelliSurv,该框架以分布式协作方式自动检测和定位异常声音事件。所提出的框架使用一种新的团队理论SM来协调感测资源,该理论基于信念-愿望-意图(BDI)模型,用于自主决策和资源分配。所提出的异常事件识别模块使用支持向量机(SVM)和线性判别分析(LDA)分类器,依赖于音频信息来识别人的尖叫声或高强度语音信号。这项工作中的模拟场景是使用Jadex平台和“模拟和实际压力下的语音(SUSAS)”数据库实施的滑铁卢国际机场的监视。仿真结果表明,与流行的集中式系统相比,所建议的IntelliSurv框架在变化的网络大小,威胁数量,信噪比(SNR),跟踪质量和能耗方面具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号