首页> 外文期刊>Future generation computer systems >An on-demand coverage based self-deployment algorithm for big data perception in mobile sensing networks
【24h】

An on-demand coverage based self-deployment algorithm for big data perception in mobile sensing networks

机译:移动感知网络中基于按需覆盖的大​​数据感知自部署算法

获取原文
获取原文并翻译 | 示例

摘要

Mobile Sensing Networks have been widely applied to many fields for big data perception such as intelligent transportation, medical health and environment sensing. However, in some complex environments and unreachable regions of inconvenience for human, the establishment of the mobile sensing networks, the layout of the nodes and the control of the network topology to achieve high performance sensing of big data are increasingly becoming a main issue in the applications of the mobile sensing networks. To deal with this problem, we propose a novel on-demand coverage based self-deployment algorithm for big data perception based on mobile sensing networks in this paper. Firstly, by considering characteristics of mobile sensing nodes, we extend the cellular automata model and propose a new mobile cellular automata model for effectively characterizing the spatial–temporal evolutionary process of nodes. Secondly, based on the learning automata theory and the historical information of node movement, we further explore a new mobile cellular learning automata model, in which nodes can self-adaptively and intelligently decide the best direction of movement with low energy consumption. Finally, we propose a new optimization algorithm which can quickly solve the node self-adaptive deployment problem, thus, we derive the best deployment scheme of nodes in a short time. The extensive simulation results show that the proposed algorithm in this paper outperforms the existing algorithms by as much as 40% in terms of the degree of satisfaction of network coverage, the iterations of the algorithm, the average moving steps of nodes and the energy consumption of nodes. Hence, we believe that our work will make contributions to large-scale adaptive deployment and high performance sensing scenarios of the mobile sensing networks.
机译:移动传感网络已广泛应用于智能交通,医疗健康和环境传感等大数据感知领域。然而,在一些复杂的环境和人类无法到达的不便区域中,移动传感网络的建立,节点的布局以及对实现大数据的高性能传感的网络拓扑的控制正日益成为该领域的主要问题。移动传感网络的应用。针对这一问题,本文提出了一种基于移动感知网络的基于按需覆盖的大​​数据感知自部署算法。首先,通过考虑移动传感节点的特征,我们扩展了细胞自动机模型,并提出了一种新的移动细胞自动机模型,以有效地表征节点的时空演化过程。其次,基于学习自动机理论和节点运动的历史信息,我们进一步探索了一种新的移动蜂窝学习自动机模型,其中节点可以自适应,智能地确定低能耗的最佳运动方向。最后,我们提出了一种新的优化算法,可以快速解决节点的自适应部署问题,从而在短时间内得出最佳的节点部署方案。大量的仿真结果表明,从网络覆盖的满意程度,算法的迭代次数,节点的平均移动步长和节点的能耗等方面来看,本文提出的算法比现有算法的性能高出40%。节点。因此,我们相信我们的工作将为移动传感网络的大规模自适应部署和高性能传感场景做出贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号