首页> 外文期刊>Future generation computer systems >QoS-guaranteed resource provisioning for cloud-based MapReduce in dynamical environments
【24h】

QoS-guaranteed resource provisioning for cloud-based MapReduce in dynamical environments

机译:在动态环境中为基于云的MapReduce提供QoS保证的资源配置

获取原文
获取原文并翻译 | 示例

摘要

How to guarantee Quality of Service (QpS) with the minimum resource cost has become a new problem in cloud-based computation-intensive MapReduce computations. However, the new problem is challenging as the cloud-based MapReduce environment is dynamically changing. As a result, a static resource allocation scheme is not suitable for cloud-based MapReduce as resources may be under-provisioning, which leads to violations in the QpS of cloud-based MapReduce, or over-provisioning, which increases unnecessary resource cost. This paper abstracts the problem of cloud-based computation-intensive MapReduce computations as a dynamical optimization problem, and proposes an event-driven resource provisioning framework to solve that problem. This new event-driven framework has been compared with existing popular static resource provisioning frameworks and periodic resource provisioning frameworks by experiments. The experimental results have shown that the new event-driven resource provisioning framework not only guarantees the QoS of those MapReduce computations, but also reduces the running cost of MapReduce computations by 4.87 - 21.61 percent compared with those static resource provisioning frameworks, and by 1.70-16.12 percent compared with those periodic resource provisioning frameworks.
机译:如何以最小的资源成本保证服务质量(QpS)已成为基于云的计算密集型MapReduce计算中的新问题。但是,由于基于云的MapReduce环境正在动态变化,因此新问题具有挑战性。结果,静态资源分配方案不适用于基于云的MapReduce,因为资源可能配置不足,这会导致违反基于云的MapReduce的QpS,或者导致配置过度,从而增加了不必要的资源成本。本文将基于云的计算密集型MapReduce计算问题抽象为动态优化问题,并提出了一种事件驱动的资源供应框架来解决该问题。通过实验,已将此新的事件驱动框架与现有的流行静态资源供应框架和定期资源供应框架进行了比较。实验结果表明,新的事件驱动资源配置框架不仅可以保证那些MapReduce计算的QoS,而且与那些静态资源配置框架相比,还可以将MapReduce计算的运行成本降低4.87-21.61%,并且降低1.70-与那些定期资源供应框架相比,增长了16.12%。

著录项

  • 来源
    《Future generation computer systems》 |2018年第1期|18-30|共13页
  • 作者单位

    School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia;

    School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia;

    School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MapReduce; Cloud computing; Quality of service; Resource scaling; Hard deadline; Big data;

    机译:MapReduce;云计算;服务质量;资源扩展;艰巨的期限;大数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号