首页> 外文期刊>Fusion Engineering and Design >Analysis of water activation in fusion and fission nuclear facilities
【24h】

Analysis of water activation in fusion and fission nuclear facilities

机译:融合融合核设施中的水活化分析

获取原文
获取原文并翻译 | 示例
       

摘要

Water is used as a cooling fluid of certain systems in operational fusion reactors and will also be used in the ITER tokamak. During cooling the water is exposed to high energy neutrons emitted from fusion of deuterium and tritium and becomes activated. The main contributors to the activity of the cooling water are radioactive isotopes of oxygen and nitrogen produced by activation of oxygen isotopes in the cooling water, i.e. N-16, N-17 and( )(19)O. As currently few experiments for water activation in fusion reactors exist, computational methods are needed to determine water activation and consequent dose rates in fusion reactors. The calculated activation of oxygen isotopes strongly depends on the cross sections in evaluated nuclear data libraries. For fusion reactors there are two reference nuclear data libraries: FENDL-2.1 and FENFL-3.1b. The calculated activities of nuclides in water have an uncertainty, which depend on the uncertainty of calculated neutron spectra and uncertainty in reaction cross sections. For the reference fusion libraries the uncertainty for activation of water isotopes, due to uncertainty in reaction cross section, is around 8% for isotope O-16, around 12% for the isotope O-17 and around 12% for isotope O-18. The uncertainty in oxygen activation due to the uncertainty of activation cross sections is thus in the order of several percent. Hence statistical uncertainty of neutron fluxes calculated with the Monte Carlo method can be of the same order of magnitude.
机译:用作操作融合反应器中某些系统的冷却流体,也将用于迭代托卡马克。在冷却过程中,水暴露于从氘和氚的融合中发出的高能量中子,并被激活。对冷却水的活性的主要贡献者是通过在冷却水中活化的氧同位素而产生的氧和氮的放射性同位素,即N-16,N-17和(19)o。由于目前存在融合反应器中的水活化实验,因此需要计算方法来确定融合反应器中的水活化和随后的剂量率。计算的氧同位素的激活强烈取决于评估核数据文库中的横截面。对于融合反应器,有两个参考核数据库:Fendl-2.1和Fenfl-3.1b。在水中计算的核素的核酸活性具有不确定性,这取决于计算中子谱的不确定性和反应横截面中的不确定性。对于参考融合文库,由于反应横截面的不确定性而导致水同位素的不确定度为同位素O-16的8%,同位素O-17约为12%,同位素O-18约为12%。由于激活横截面不确定性导致的氧激活的不确定性是数值的百分比。因此,利用蒙特卡罗方法计算的中子通量的统计不确定性可以是相同的数量级。

著录项

  • 来源
    《Fusion Engineering and Design》 |2020年第11期|111828.1-111828.5|共5页
  • 作者单位

    Jozef Stefan Inst Reactor Phys Dept Ljubljana Slovenia|Univ Ljubljana Fac Math & Phys Ljubljana Slovenia;

    Jozef Stefan Inst Reactor Phys Dept Ljubljana Slovenia;

    Jozef Stefan Inst Reactor Phys Dept Ljubljana Slovenia|Univ Ljubljana Fac Math & Phys Ljubljana Slovenia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Activated cooling water; Fusion reactors; Nuclear data uncertainties;

    机译:活化冷却水;融合反应器;核数据不确定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号