首页> 外文期刊>Fusion Engineering and Design >The development of a three-dimensional finite element method code for the heat flux analysis of tungsten monoblock divertor on EAST
【24h】

The development of a three-dimensional finite element method code for the heat flux analysis of tungsten monoblock divertor on EAST

机译:基于EAST的钨整体分流器热流分析的三维有限元方法代码的开发。

获取原文
获取原文并翻译 | 示例
       

摘要

The calculation of heat flux on the divertor is critical to study the characteristics of energy transport in controlled fusion plasma. Since 2014, the upper divertor of Experimental Advanced Superconducting Tokamak (EAST) has been upgraded into water-cooled W/Cu monoblock, and therefore the original two-dimensional(2D) heat calculation code does not apply to the heat flux calculation on the upper divertor due to the asymmetry toroidal geometry. Thus, it is urgent to develop a Three-dimension(3D) heat flux calculation code based on Finite Element Method(FEM) to determine the 2D heat flux distribution at the divertor surface in EAST. This paper presents a detailed design and development of this 3D FEM heat flux calculation method with the full consideration the monoblock geometry of the upper divertor. Based on the surface temperature captured from the IR camera, and the effect of a thin surface layer on the divertor, the heat transmission coefficient was determined in the solution of heat conduction equation. To benchmark this code, the calculation results are compared with the results using ANSYS software with the same conditions(constant temperature boundary and constant heat flux boundary). The comparison results show good agreements that the maximum fractional error between the two methods is less than 4 %. Finally, the characteristics of heat flux distribution on the divertor due to edge localized modes(ELMs) losses on EAST are also demonstrated.
机译:计算偏滤器上的热通量对于研究受控聚变等离子体中的能量传输特性至关重要。自2014年以来,实验高级超导托卡马克(EAST)的上部分流器已升级为水冷W / Cu单体,因此原始的二维(2D)热计算代码不适用于上部的热通量计算由于不对称的环形几何形状而产生偏滤器。因此,迫切需要开发一种基于有限元方法(FEM)的三维(3D)热通量计算代码,以确定EAST偏滤器表面的二维热通量分布。本文介绍了这种3D FEM热通量计算方法的详细设计和开发,并充分考虑了上分流器的整体几何形状。基于从红外热像仪捕获的表面温度,以及薄表面层对分流器的影响,可以通过热传导方程的解确定传热系数。为了对该代码进行基准测试,将计算结果与使用相同条件(恒定温度边界和恒定热通量边界)的ANSYS软件的结果进行比较。比较结果表明,两种方法之间的最大分数误差均小于4%。最后,还证明了由于EAST上的边缘局部模式(ELMs)损失而导致的偏滤器上的热通量分布特征。

著录项

  • 来源
    《Fusion Engineering and Design》 |2020年第3期|111448.1-111448.9|共9页
  • 作者

  • 作者单位

    Tongling Univ Tongling 244000 Peoples R China|Anhui Tongfeng Elect Co Ltd Tongling 244000 Peoples R China;

    Tongling Univ Tongling 244000 Peoples R China;

    Chinese Acad Sci Inst Plasma Phys Hefei 230031 Peoples R China;

    Hefei Univ Technol Sch Instrument Sci & Optoelect Engn Hefei 230009 Peoples R China;

    Donghua Univ Coll Sci Dept Appl Phys Shanghai 201620 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tungsten divertor; Three-dimensional FEM; Heat flux; IR;

    机译:钨分流器;三维有限元热通量;红外;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号