首页> 外文期刊>Fuel >Investigations of thermochemical upgrading of biomass and its model compounds: Opportunities for methane utilization
【24h】

Investigations of thermochemical upgrading of biomass and its model compounds: Opportunities for methane utilization

机译:生物质及其模型化合物的热化学提质研究:甲烷利用的机会

获取原文
获取原文并翻译 | 示例

摘要

Biomass utilization is an attractive option for production of fuels and chemicals in the wake of global concern over continuing use of fossil fuels. Biomass can be thermochemically upgraded via gasification, liquefaction or pyrolysis to obtain fuel and/or valuable chemicals. Overall, gasification occurs at high temperature and results in a predominantly gas product. Liquefaction requires relatively low temperature and quite high pressure, and gives a high-quality liquid product. Pyrolysis takes place at moderate temperatures and produces the crude bio-oil. However, the resulting bio-crude is highly oxygenated while containing multiple impurities and disadvantageous to be used as a fuel. Due to the complex and expensive reactor systems associated with liquefaction, pyrolysis is the preferred method for biomass conversion. Hydrotreating or catalytic cracking for the crude oil upgrading either requires large consumption of expensive hydrogen or suffers from low H/C ratios without H-2 supply. A novel process named methanolysis allows pyrolysis and catalytic conversion to occur simultaneously under a methane environment, which has shown promise. Due to the original complexity of biomass and the resulting bio-oil, biomass-derived model compounds are extensively employed to investigate the involved reaction mechanisms. This article reviews the current technologies and the progress regarding methane upgrading of biomass based on model compound studies. Through catalyst development, better understanding of methane upgrading mechanisms, and kinetics investigations, biomass valorization with methane could become a viable alternative to the formation of fuels and valuable chemicals widely practiced in industries nowadays.
机译:随着全球对持续使用化石燃料的关注,生物质利用是燃料和化学产品生产的一个有吸引力的选择。可以通过气化,液化或热解对生物质进行热化学提质以获得燃料和/或有价值的化学物质。总的来说,气化发生在高温下,并主要产生气体产物。液化需要相对较低的温度和相当高的压力,并得到高质量的液体产品。热解在中等温度下进行,并产生粗制生物油。但是,所得的生物粗品被高度氧化,同时含有多种杂质,不利于用作燃料。由于与液化相关的复杂且昂贵的反应器系统,热解是用于生物质转化的优选方法。用于原油提质的加氢处理或催化裂化要么需要大量消耗昂贵的氢气,要么会遭受H / C比低的问题,而无需供应H-2。一种被称为甲醇分解的新方法可以在甲烷环境下同时进行热解和催化转化,这已显示出希望。由于生物质的原始复杂性和产生的生物油,生物质衍生的模型化合物被广泛用于研究所涉及的反应机理。本文基于模型化合物研究综述了生物质甲烷提质的最新技术和进展。通过催化剂的开发,对甲烷提质机理的更好理解以及动力学研究,用甲烷对生物质进行增值可以成为当今工业中广泛使用的燃料和有价值的化学物质形成的可行替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号