首页> 外文期刊>Foundations of computing and decision sciences >Transfer Learning Methods as a New Approach in Computer Vision Tasks with Small Datasets
【24h】

Transfer Learning Methods as a New Approach in Computer Vision Tasks with Small Datasets

机译:将学习方法作为小型数据集的计算机视觉任务中的新方法

获取原文
获取原文并翻译 | 示例

摘要

Deep learning methods, used in machine vision challenges, often face the problem of the amount and quality of data. To address this issue, we investigate the transfer learning method. In this study, we briefly describe the idea and introduce two main strategies of transfer learning. We also present the widely-used neural network models, that in recent years performed best in ImageNet classification challenges. Furthermore, we shortly describe three different experiments from computer vision field, that confirm the developed algorithms ability to classify images with overall accuracy 87.2-95%. Achieved numbers are state-of-the-art results in melanoma thickness prediction, anomaly detection and Clostridium difficile cytotoxicity classification problems.
机译:在机器视觉挑战中使用的深度学习方法,通常面临数据量和质量的问题。为解决这个问题,我们调查转移学习方法。在这项研究中,我们简要描述了这个想法并介绍了转移学习的两个主要策略。我们还介绍了广泛使用的神经网络模型,近年来在Imagenet分类挑战中表现最佳。此外,我们很快描述了计算机视觉领域的三个不同的实验,确认了发达的算法能力,将图像分类为87.2-95%的整体精度。达到的数字是最新的,结果是黑素瘤厚度预测,异常检测和梭菌艰难梭菌细胞毒性分类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号